

Mount Kemble Lake

2017 Year End Water Quality Summary
Mount Kemble Lake Association, Inc.

Morristown, NJ

December 4, 2017

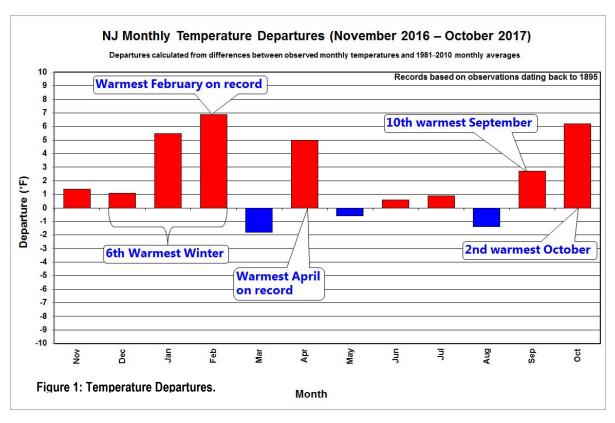
Ruth Chaney Mount Kemble Lake Association 28 Lake Trail West Morristown, NJ 07960

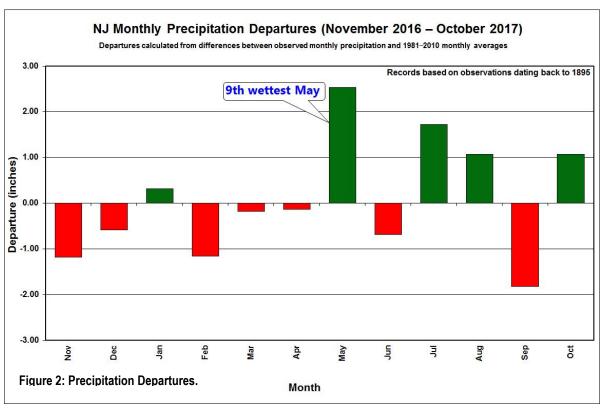
YEAR END SUMMARY 2017 WATER QUALITY PROGRAM MOUNT KEMBLE LAKE

INTRODUCTION

The following report is the 2017 Year-End Summary of the Water Quality Monitoring and Lake Management Program for Mount Kemble Lake located in Morristown, Morris County, New Jersey. This report includes the details of lake surveys, water quality monitoring program, phytoplankton surveys, and observations logged during site visits in 2017. Recommendations for Mount Kemble Lake management efforts are also included for lake management strategies in the 2018 season. The Appendix of this report includes graphs and tables of the 2017 field data, reference guides, along with supporting documents for this report.

The 2017 Lake Management Program for Mount Kemble Lake focused on control of nuisance and invasive aquatic plant growth, most specifically curly-leaf pondweed (*Potamogeton crispus*), leafy pondweed (*Potamogeton foliosus*), and southern naiad (*Naias*


Scientific Name	Common Name
Potamogeton foliosus	Leafy Pondweed
Potamogeton crispus	Curly-leaf Pondweed
Lemna minor	Small Duckweed
Najas guadalupensis	Southern Naiad
Potamogeton diversifolius	Water-thread Pondweed
Table 4, 0047 Observed Associate N	1 l t


Table 1. 2017 Observed Aquatic Macrophytes.

guadalupensis). Through the season a total of five (5) different aquatic macrophytes were observed during surveys of the lake (Table 1), with invasive species highlighted in red. One (1) of these species duckweed (*Lemna minor*) is a floating aquatic plant.

WEATHER DISCUSSION

The year started off with a warmer than average winter. Spring included the warmest April on record, but the majority of the lake management season was close to average with a slight warm spell in September. The closer to average temperatures were helpful when it came to algae growth as there was much less than previous years. (Figure 1 Rutgers Climate Lab). Precipitation was a bit below average for the beginning of the year until May, which was the 9th wettest on record. The majority of the summer saw greater than average precipitation with a relatively dry September, which helped to spark some late season algae blooms. (Figure 2 Rutgers Climate Lab).

LAKE MANAGEMENT

Aquatic biologists were at Mount Kemble Lake on seven (7) dates from April through September to conduct on-water assessments of aquatic vegetation and algae growth, and to perform *in situ* water quality analysis. On four (4) dates, comprehensive water quality analysis was conducted including, sampling for planktonic algae and zooplankton, lab sample collection and lake profile analysis for temperature and dissolved oxygen. Following each survey, biologists would review lake conditions to determine if management activity was required or requested. In 2017, on only two (2) dates SŌLitude Lake Management field staff conducted herbicide or algaecide applications for control of nuisance and invasive aquatic vegetation growth. The table below provides a reference to indicate dates of applications, what aquatic pesticides were applied, and the target acreage and aquatic plant species for each date (Table 2).

	Date	Service Performed	Acres Treated	Target Species
ĺ	7/14/2017	Copper Sulfate	6.7	Filamentous algae
l	//14/201/	Tribune	6.7	N. guadalupensis
	8/15/17	Copper Sulfate	6.7	Unicellular algae

Table 2: Mount Kemble Lake 2017 Treatment Log

The early season survey conducted at Mount Kemble Lake during April showed that the lake supported small patches of (*N. guadalupensis*) the northwestern shoreline. Overall, the lake looked good and only had minor amounts of filamentous algae that were observed floating on the surface. Curly-leaf pondweed (*P. crispus*) was <u>not</u> observed during this survey. On May 18th, the second survey of the season was conducted and at this time aquatic plant life was observed in similar densities as the first visit of the season. Only trace amounts of filamentous algae were observed floating on the surface, but it was not found in densities that required treatment.

The lake was visited again in early June and the survey indicated the amount of naiad growth remained similar to what was observed in the previous two visits. The amount of filamentous algae increased slightly since that last visit, but still was not at levels that needed treatment. On June 22^{nd} the lake was visited again and the survey reported trace densities of curly-leaf pondweed along the east and west shorelines. Southern naiad was observed in moderate densities, but was far enough away from the surface that treatment was not necessary.

The first survey in July reported that the southern naiad growth had increased to relatively heavy densities and was located along portions of the eastern and western shorelines and primarily in the northern end of the lake. Sparse amounts of algae were also observed at this time and treatment for both the naiad and algae was completed using **Tribune** (diquat) and **Copper Sulfate**.

In mid- august, a lake survey indicated that the previous treatment was successful as plant growth was greatly reduced. The reduction in plants did however, lead to an increase in unicellular algae growth. **Copper Sulfate** was employed in order to control the algae growth as well as improve the water clarity. The last visit to the lake occurred in mid-September and the lake looked good at that time. Only minor amounts of filamentous algae were observed and plant growth was minimal.

WATER QUALITY MONITORING PROGRAM

In 2017, the water quality monitoring program included *in-situ* field measured limnological analysis including temperature/dissolved oxygen profiles, pH, transparency, alkalinity, and total hardness. In addition, surface water chemistry samples were collected at the north inlet and lake station, as well as from the lake bottom at the lake station site, and transported to Alpha Laboratories (Mahwah, New Jersey) for analysis of the following parameters: ammonia, conductivity, nitrate, total phosphorus, and total suspended solids. On May 4th, samples for total phosphorous were also collected at the inlet and outlet in accordance with the New Jersey Total Maximum Daily Load (TMDL) threshold. Collection for phytoplankton and zooplankton identification and enumeration was also performed on three dates. Provided in the Appendix is a short description of each water quality parameter, and laboratory data results. Below is the water quality data tabulated to provide a seasonal reference.

WATER QUALITY DATA TABLES

Mount Kemble Lake Water Quality Results – Inlet Station							
Parameter Units 5/4/2017 Limits							
Total Phosphorus	mg/L	0.005	0.03				

Table 3. 2017 Mount Kemble Lake Water Quality Results

Results highlighted in red identify those that are outside the acceptable lake management limit.

Mount Kemble Lake Wat	ition					
Parameter	Units	5/4/2017	6/22/2017	7/20/2017	8/17/2017	Limits
Temperature	°C	17.5	25.5	29.1	25.2	NA
Dissolved Oxygen	mg/L	10.06	8.12	8.74	9.41	<4.0
	SU	8.25	8.25	8.5	8.0	9
Alkalinity	mg/L	60	76	68	74	NA
Total Hardness	mg/L	140	120	180	160	NA
Secchi	feet	4.0	4.25	7.0	7.0	<4'
Ammonia	mg/l	0.024	0.061	0.054	0.54	0.3
Nitrate	mg/L	0.386	ND	ND	ND	0.3
Total Phosphorus	mg/L	0.021	0.035	0.027	0.069	0.03
Total Suspended Solids	mg/L	ND	ND	ND	ND	25
Conductivity	Umhos/cm	350	340	317	330	1500

Table 4, 2017 Mount Kemble Lake Water Quality Results

Results highlighted in red identify those that are outside the acceptable lake management limit.

Mount Kemble Lake Water Quality Results- Lake Station Surface						
Parameter	Units	5/4/2017	6/22/2017	7/20/2017	8/17/2017	Limits
Temperature	°C	16.1	26.3	30.1	25.0	NA
Dissolved Oxygen	mg/L	8.93	7.93	8.44	9.18	<4.0
ph	SU	7.25	8.25	8.50	8.0	9
Alkalinity	feet	80	80	76	80	NA
Total Hardness	mg/L	160	120	180	80	NA
Secchi	mg/L	3 est	3.75	5.0	3.5	<4'
Ammonia	mg/l	0.043	0.051	0.056	0.028	0.3
Nitrate	mg/L	0.471	ND	0.039	0.034	0.3
Total Phosphorus	mg/L	0.057	0.045	0.37	0.062	0.03
Total Suspended Solids	mg/L	ND	5.3	ND	ND	25
Conductivity	Umhos/cm	360	340	320	330	1500

Table 5. 2017 Mount Kemble Lake Water Quality Results

Results highlighted in red identify those that are outside the acceptable lake management limit.

Mt. Kemble Lake Water						
Parameter	Units	5/4/2017	6/22/2017	7/20/2017	8/17/2017	Limits
Dissolved Oxygen	mg/L	6.83	0.07	0.2	0.08	<4.0
Ammonia	mg/L	0.084	1.22	0.921	2.55	0.3
Nitrate	mg/L	0.416	ND	ND	ND	0.3
Total Phosphorus	mg/L	0.008	0.066	0.062	0.207	0.03
Total Suspended Solids	mg/L	ND	12	5.4	12	25
Conductivity	umhos/cm	340	370	340	380	1500

Table 6. 2017 Mount Kemble Lake Water Quality Results

Results highlighted in red identify those that are outside the acceptable lake management limit.

Mount Kemble Lake Water Quality Results - Outlet Station						
Parameter	Parameter Units 5/4/2017 Limit					
Total Phosphorus	mg/L	0.022	0.03			

Table 7. 2017 Mount Kemble Lake Water Quality Results

Results highlighted in red identify those that are outside the acceptable lake management limit.

WATER QUALITY RESULTS SUMMARY

During 2017, the surface water temperature was 16.1° C in April, and by August the temperature had increased a great deal to 30.1 °C. The pH values collected from the inlet and lake station sites throughout the year were consistent with a small range of 7.25 to 8.5, which falls within the typical range for freshwater lake systems, and is within historical readings of the past several years for Mt. Kemble Lake. The hardness levels were not as stable as they have been in the past, ranging from 80 mg/L to 180 mg/L. The typical range characteristics to freshwater lakes are those falling between 4 and 200mg/L, which falls in line with typical readings for the lake.

The chemical composition of Mount Kemble Lake's surface water is considered moderately hard water. The alkalinity values remained consistent throughout the year from 60 to 80 mg/L, and within a comparable level compared to similar NJ freshwater lakes' chemical composition. Conductivity was consistent throughout the season with values ranging from 320 to 380 µmhos/cm., with the highest observed value obtained in the August bottom lake station location sample. These conductivity readings would be considered relatively stable as there was not much fluctuation throughout the season. Ammonia and nitrates are nutrients based on the chemical composition of nitrogen. These naturally occurring compounds when influenced by human activity can cause excessive plant and algae growth. Throughout the season, in most locations, ammonia levels were within the acceptable limits, but in 3 samples at the lake station bottom sampling site they were above acceptable limits, which is generally not typical for the lake. Although levels were higher than normal it did not seem to have adverse effects on the lake. Nitrates were found to be elevated in periodically throughout the season as the lake station sampling site reported 3 sampling events that were higher than normal values for nitrates. There were only 2 occasions of this in the other sites and the rest of the samplings all fell within the normal range.

Total phosphorus is usually present in freshwater lakes at low concentrations. Total phosphorus concentrations in a freshwater lake system should be less than 0.03 mg/L to prevent higher productivity. In 2017, the phosphorus levels were observed to be higher than the acceptable values in almost every sample taken throughout the year. The majority of these elevated samples were about double the acceptable limit, but the lake station July sample and the August bottom sample were many times the acceptable limit. When levels were elevated they were marginally above the typical values expected in a eutrophic lake system. Although these levels of phosphorus generally lead to excessive plant and algae growth, growth was relatively limited throughout the season.

Oligotrophic	Mesotrophic	Eutrophic	Hypereutrophic
<0.012mg/L	0.012 - 0.024mg/L	0.025 - 0.096mg/L	>0.096mg/L
Very Good	Good	Fair	Impoundments

Table 8: Trophic Status Based on Phosphorus Values

Transparency (water clarity) displayed moderate variability in 2017, with observed secchi readings between 3 and 7 feet. Mt. Kemble Lake typically supports lake conditions that favor relatively high water clarity readings, however, in 2017 clarity readings were lower than usual as the highest clarity reading was 7 feet and the majority of the season was between 4 and 5 feet. This is likely to do with the turbidity of the water. Often times survey reports stated that the water was tannic, which would lower the water clarity. An alum treatment was not conducted this season and could also have contributed to slightly lower water clarity readings.

LAKE PROFILE DESCRIPTION

	5/4/	2017	6/22/2017		7/20	/2017	8/17/17	
Depth	Temp.	DO	Temp.	DO	Temp.	DO	Temp.	DO
(m)	(°C)	(mg/L)	(°C)	(mg/L)	(°C)	(mg/L)	(°C)	(mg/L)
Surface	17.5	10.06	25.5	8.12	29.1	8.74	25.2	9.41
1	17.5	10.85	24.7	7.88	28.3	8.52	25.0	9.31
2	17.4	10.82	21.7	8.83	26.5	6.57	24.6	8.87
3	17.2	10.80	18.2	0.16	23.1	1.20	23.7	3.03
4	15.3	11.07	14.9	0.06	17.2	0.43	21.3	0.81
5	14.3	8.18	12.6	0.06	13.5	0.02	16.2	0.14
6	14.4	8.43	10.4	0.06	11.3	0.19	12.0	0.10
7	14.1	6.92	9.3	0.06	9.9	0.19	10.2	0.09
8	14.1	6.83	8.0	0.06	8.5	0.20	9.2	0.08
9	NA	NA	7.3	0.06	7.9	0.20	8.2	0.08
Table 9. Mor	unt Kemble	Lake Disso	lved Oxyge	n Profiles.				

The 2017 May profile revealed a well mixed water column, with favorable dissolved oxygen to a depth of twenty-four feet, which was similar to what was observed in the spring of 2016. During June, the lake profile revealed what is called a positive heterograde curve, which simply means that the water quality conditions of the lake depleted dissolved oxygen below a depth of approximately twelve feet, however during this season, the dissolved oxygen levels were extremely low at depths of only 6 feet. This type of water quality condition is observed most frequently in lakes where the surface area is small relative to the maximum depth and protected from intense wind action by surrounding topography and vegetation, which is descriptive of Mt. Kemble Lake. Overall, this pattern remained the same for the rest of the season as dissolved oxygen levels dropped significantly after 6 feet of depth. Complete profile graphs are provided in the Appendix of this report.

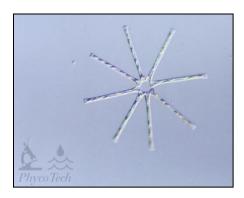


Figure 3. Mount Kemble Lake Seasonal Profile

PLANKTON SURVEYS

Phytoplankton and Zooplankton surveys were conducted at Mount Kemble Lake in conjunction with the water quality monitoring program. In 2017, surface phytoplankton samples were collected at two established water quality monitoring sites in May, June, July and August. Samples were collected in dedicated, pre-rinsed one liter plastic bottles and placed in a cooler with ice for transport. The samples were identified and enumerated under a compound microscope immediately upon return to SŌLitude Lake Managements's laboratory. The 2017 microscopic examination data sheets and graphs are provided in the Appendix. In 2017, a single vertical zooplankton tow was conducted at the lake station on each date. The collected sample was preserved in the field, and returned to SŌLitude's lab for analysis.

A PHYTOPLANKTON PRIMER

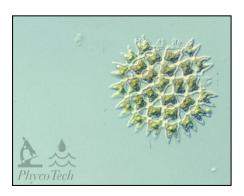

Lakes typically contain three broad categories of phytoplankton (also sometimes referred to as algae). These include filamentous phytoplankton, macroscopic multi-branched phytoplankton (which appear similar to submersed plants), and unicellular phytoplankton. Each category shall be discussed in turn, although the results of the 2017 sampling will focus on the unicellular phytoplankton population.

Filamentous phytoplankton are typically macroscopic (that is, visible with the naked eye), composed of long chains of cells that are attached to a substrate, typically the lake bottom, submersed or emergent vegetation, or rocks. This is called benthic filamentous algae (BFA), and rampant growth can become visible at the surface. As pieces of benthic filamentous algae break apart, it often floats on the surface as dense unsightly mats called floating filamentous algae (FFA). Typically, genera of green algae or blue-green algae develop into nuisance filamentous mats. Abundant nuisance growth of filamentous phytoplankton creates numerous negative impacts to a lake. These can include a decrease in aesthetics, a decrease in recreational uses, increased fishing frustration, and water quality degradation.

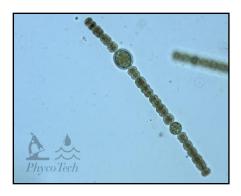
Macroscopic multi-branched phytoplankton appears to be submersed plants, especially when viewed in the water column. Physical examination reveals simple structures, no conductive tissue, and a lack of roots (instead having simplified rhizoids). Although typically only reaching heights of a few inches, under ideal conditions, this type of phytoplankton can reach lengths of several feet, and create a dense carpet on the bottom of a lake. Therefore, it typically does not reach nuisance levels in a lake, save for high use areas such as beaches and other popular swim areas. Since this phytoplankton occupies a similar ecological niche as submersed plants, it's often included in detailed and visual aquatic plant surveys. It provides numerous benefits to a lake system, including sediment stabilization, acting as a nutrient sink, providing invertebrate and fish shelter and habitat, and is one of the first to re-colonize a disturbed area. In the Northeast, muskgrass (*Chara* sp.) and stonewort (*Nitella* sp.) are two of the most common macroscopic multibranched phytoplankton.

Unicellular phytoplankton are typically microscopic, and consist of individual cells or colonies of cells suspended in the water column. At high enough densities (often called a bloom), they can impart a green or brown (and sometimes, even red) tint to the water column. Unicellular phytoplankton belongs to several taxonomic groups with density and diversity of these groups often varying due to seasonality. When unicellular phytoplankton density becomes elevated it can reduce water clarity (giving the water a "pea soup" appearance), and impart undesirable odors. Usually blue-green algae are responsible for these odors, but other groups or extremely elevated densities can impart them as well. In addition to decreased aesthetics, unicellular phytoplankton blooms can cause degradation of water quality, increase the water temperature (turbid water warms faster than clear water), and can possibly produce a variety of toxins (in the case of blue-green

algae), depending on the type of genera present and environmental conditions. Numerous groups of unicellular phytoplankton are common in the Northeast, including diatoms, golden algae, green algae, blue-green algae, euglenoids and dinoflagellates. Each group shall be discussed in turn.


Diatoms are ubiquitous as a group, and often possess a rigid silica shell with ornate cell wall markings or etchings. The silica shells settle to the bottom substrate after they die, and under ideal conditions can become stratified. Limnologists can then study historical (and possibly even ancient) population characteristics of diatoms. Some are round and cylindrical (centric) in shape, while others are long and wingshaped (pennales). They are usually brown in color, and reach maximum abundance in colder or acidic water. Therefore,

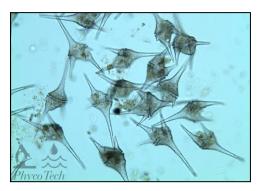
they tend to dominate in winter and early spring. Common diatoms in the Northeast include *Fragilaria, Cyclotella, Navicula*, and *Asterionella* (pictured).


Golden Algae are typically yellow or light brown in color. Cell size is usually small oval shaped with a partially empty area, but several genera create colonies of smaller cells. Most have two flagella, and some type of scales or a rigid coating that grants it a fuzzy appearance. However, a few filamentous forms are possible as well. They typically prefer cooler water, so they dominate in the late fall, winter, or early spring. They also tend to bloom at deeper (cooler) depths. They are

common in low nutrient water, and numerous forms produce taste and odor compounds. Common golden algae in the Northeast include *Dinobryon* (pictured), *Mallomonas*, and *Synura*.

Green Algae are a very diverse group of unicellular phytoplankton. There is tremendous variability in this group which varies from family to family and sometimes even genus to genus. There are flagellated single cells, multi-cell colonies (some motile), filamentous forms and attached forms, typically with distinct cell shapes light green in color. Some prefer acidic waters, and others highly eutrophic (sewage) conditions. A green algae bloom usually occurs in water with high nitrogen levels. Green algae typically dominate in mid

to late summer in the Northeast. Common genera include *Chlorella*, *Scenedesmus*, *Spirogyra* and *Pediastrum* (pictured).


Blue-green algae are actually photosynthetic bacteria. Therefore, they tend to be small, simple in structure and lacking interior cell details. Blue-green algae are typically encased in a mucilaginous outer layer. Some genera are adorned with heterocysts, swollen structures capable of fixing nitrogen, a competitive advantage. These types tend to bloom in nitrogen-poor or eutrophic systems. Yet, blue-green algae are tolerant of a wide variety of water chemistries, and boast many oligotrophic forms as well. Blue-green algae often have

gas vesicles which provide increased buoyancy another competitive advantage over other groups of phytoplankton, due to their propensity to shade out others by blooming at the surface. Numerous blue-green algae are documented taste and odor (T&O) producers, and under certain environmental conditions and high enough densities, can produce toxins dangerous to fish, livestock, and possibly humans. Blue-green algae typically dominate a lake system in late summer to early fall. Common blue-green algae that occur in the Northeast include *Anabaena* (pictured), *Aphanizomenon, Microcystis* and *Coelosphaerium*.

Euglenoids are typically motile with 0 to 3 (typically 2) flagella, one of which is longer. Euglenoids has plasticity of shape, and usually are grass green in color (although sometime they are clear or even red). Most forms have a distinct red "eyespot. They are often associated with high organic content water, and eutrophic conditions. Common euglenoids that occur in the Northeast include *Euglena*

(pictured), *Phacus*, and *Trachelomonas*.

Dinoflagellates are very common in marine environments, in which they often cause toxic blooms. However, toxin production in freshwater genera is very rare. Dinoflagellates are typically single ovoid to spherical cells, but large compared to phytoplankton from other groups. They usually possess two flagella (one wrapped around the middle of the cell) which grant them rotation while they move through the water column. Cellulose plates (armored dinoflagellates) are more common, but

genera without cellulose plates (naked dinoflagellates) also occur. They generally prefer organic-rich or acidic waters, and can impart a coffee-like brown tint to the water at high enough densities. Common dinoflagellates in the Northeast include *Ceratium* (pictured) and *Peridinium*.

PHYTOPLANKTON RESULTS

In May of 2017, the phytoplankton density was considered low, with a near even split between diatoms and golden algae accounting for the entire sample. Diversity was moderate at the inlet station with six (6) genera, and low at the lake station with three (3) total

Algal Group	Inlet Station					
% Abundance	5/4/17	6/22/17	7/20/17	8/17/17		
Diatoms	63.6%	5.0%		5.9%		
Golden Algae	18.2%					
Protozoa	18.2%					
Green Algae		75.0%	100.0%	5.9%		
Blue-green Algae		20.0%		5.9%		
Dinoflagellates				82.3%		
Euglenoids						
Total Orgs / mL	110	200	140	170		

Table 10. Inlet Station

genera. The most commonly observed genera was *Synedra* as it accounted for more than half of the sample at the north inlet station. The lake station, however, was dominated by the golden algae, *dinobryon*. In the June sampling, both density and diversity remained relatively low as both locations reported low numbers. At the north station, a shift in the dominant algal group occurred as now the most commonly observed was green algae, with *Coelastrum* as the most commonly observed. The lake station sampling site was supporting primarily the euglenoid, *Euglena*.

Algal Group				
% Abundance	5/4/17	6/22/17	7/20/17	8/17/17
Diatoms	26.6%	40.0%		
Golden Algae	73.4%			
Protozoa				
Green Algae			50.0%	6.7%
Blue-green Algae			25.0%	6.7%
Dinoflagellates			25.0%	86.6%
Euglenoids		60.0%		
Total Orgs. / mL	150	50	80	150

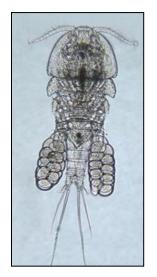
Table 11. Lake Station

For the July sampling event, the phytoplankton density remained relatively similar at both sites as did diversity as only five (5) and four (4) genera were found at each lake station respectively. At the north station, the entire sample consisted of green algae with *Staurastrum* being the most

dominant genera. The lake station supported an even number of genera from the green algae, blue-green algae, and dinoflagellate groups. Sampling in August saw similar densities as the rest of the year and at the time of sampling there was also a decrease in diversity. Both locations had supported primarily dinoflagellates, with *Peridinium* accounting for nearly all of both samples.

A ZOOPLANKTON PRIMER

Zooplankton provides an important link in a typical lake's food web between phytoplankton and developing/juvenile stages of fish. In general, zooplankton feed on phytoplankton, while fish in turn feed on zooplankton. The rate of phytoplankton feeding efficiency is primarily based on body size, but zooplankton group, and to some effect specific genera, also plays an important role. There are three main groups of zooplankton found in freshwater systems: rotifers, cladocera, and copepods.


Rotifers are a diverse group of zooplankton, very common in lakes and marine environments alike. Rotifers are generally the smallest zooplankton of the three groups, and thus typically the least efficient phytoplankton grazers. Feeding preferences are determined primarily by mouth structures, and include generalist feeders (omnivores), which eat any small organic detritus encountered, and predators, which eat other smaller rotifers and small phytoplankton. Generalist feeders include *Filinia*, *Keratella*, *Lecane*, *Euchlanis*, and *Brachionus*. Predator genera include *Polyarthra* (larger species), *Asplanchna*, *Synchaeta*, and

Trichocerca.

Cladocera are less diverse, but also very common in freshwater lakes. They are sometimes called "water fleas". They spend most of their lifecycle reproducing via parthenogenesis (asexual reproduction with an all female population) only switching to less efficient sexual reproduction when environmental conditions decline. Some genera (such as *Daphnia*) can be quite large (up to 5.0 mm long, visible without magnification), and thus can be classified as highly efficient phytoplankton grazers. Most cladocera are phytoplankton grazers, although their diet includes most organic matter ingested, including bacteria and protozoa. Body size (and thus mouth size) determines feeding efficiency, but ironically the larger-bodied genera are easier to

see by predaceous fish, and thus typically have reduced numbers in populations of zooplanktivorous fish. *Daphnia* are the most efficient phytoplankton feeders, while *Ceriodaphnia*, *Bosmina* and *Eubosmina* are less efficient. There are a few predator genera as well, including *Polyphemus* and *Leptodora*.

Copepods are almost excusive to freshwater lake systems (not streams or rivers) and estuarine and marine systems. Of the six suborders native to the United States, three are parasitic, and three are free living. One of the free living, *Harpacticoida* are exclusively benthic and thus often not collected in traditional plankton tows (unless the bottom sediments are disturbed). The remaining two suborders, the Calanoida and the Cyclopoida are of primary concern during lake studies. All copepods have several naupilar stages, followed by several immature stages, before reaching an adult stage. Both suborder adults are considered large bodied zooplankton, but have distinct feeding preferences. Calanoids are almost exclusively phytoplankton feeders and have even demonstrated selective feeding strategies. Cyclopoids have mouth parts suitable for biting and seizing prey. Their diet is primarily other crustacean zooplankton (including cannibalism

on younger life stages), as well as phytoplankton and organic detritus ingestion, but less efficiently.

Zooplankton samples were collected with an 80 um Nitex plankton net. At the Lake Station, a single vertical tow was performed to a depth of 18 feet. Using as little site water as possible, the sides of the net were rinsed of any trapped zooplankton, concentrating the organisms into the net bottom. This concentrate was then emptied into a clean 1000 mL HDPE sample bottle. Immediately after collection, the sample was preserved with an equal amount of 10% sucrose formalin, to achieve a 5% solution. Sucrose was added to the preservative to help maintain carapace integrity. The samples were then placed in a cooler stocked with blue ice. On arrival at SŌLitude's laboratory, the samples were stored in a dark refrigerator until the samples were identified and enumerated.

In the laboratory, each sample was manually mixed for about one minute, before a one mL subsample was removed using a calibrated syringe. The subsample was placed on a Sedgewick-Rafter counting cell, and examined under a compound microscope at 100X magnification. By using calibrated guides on the microscope stage, the entire one mL sample was examined, and any zooplankton were identified and enumerated to the lowest practical taxa using regionally appropriate taxonomic keys. This procedure was repeated two more times to generate three replicate counts. The counts were then averaged, and back-calculated to achieve an organism per liter density. The zooplankton count data sheets in the Appendix describe the step by step procedures for all three replicates, and the final averaged densities. Also, included in the Appendix are pie charts depicting the sample date zooplankton group distribution.

2017 Zooplankton Results

Zooplankton Group	5/4/2017	6/22/2017	7/20/17	8/17/2017
Rotifers	90.1%	53.2%	97.2%	87.1%
Cladocera	0.0%	40.7%	1.6%	4.1%
Copepoda	9.9%	6.1%	1.2%	8.8%
Total Zooplankton (Orgs. / mL)	1376	1429	1197	1051

Table 12. Mount Kemble Lake 2017 Zooplankton Group Percent Abundance Distribution

In May, overall zooplankton density was 1376 organisms per mililiter, which is considered high, but sample diversity was moderate to high with seven (7) different genera observed. At this time Rotifers accounted for nearly all off the total sample at 90.1 percent of the total zooplankton community with *Polyartha* being the most abundant genera. Additionally, no Cladocerans were observed, however (*Cyclopoid nauplii*) was also represented in the zooplankton community, however this genera only represented 9.9 percent of the total sample.

The June sampling revealed a high density of zooplankton as there were 1429 organisms per mililiter. Once again Rotifers were the most commonly found, but only accounted for at little more than half of the total sample at 53.2 percent of the total with the genera *Polyarthra* being the most commonly found within the group. At this time zooplankton diversity is considered high as only a total of thirteen (13) different genera were found in the sample. *Bosmina* was the most commonly observed Cladoceran as they accounted for 40.7% of the total sample. The *Copepoda*, (*Cyclopoid nauplii*) was found in this sample and was the most dominant copepod, but the copepods only accounted for a total of 6.1 percent of the zooplankton observed.

A sampling date on July 20th showed that the zooplankton composition was still considered high as ten (10) different genera were found at that time, however, the decreased to be 1197 organisms per milliliter were found. Rotifers made of 97.2 percent of the zooplankton composition with *Keratella* being the most abundant in the sample. *Cyclopoid nauplii* made up 1.2 percent of the sample and the Cladoceran, *Bosmina* was found in very low numbers in this sample and made up less than 1% of the total sample.

The final sampling revealed a still high density of zooplankton as there were 1051 organisms per mililiter. Once again Rotifers were the most commonly found, accounting for a large portion of the total sample as it the sample was comprised of 87.1 percent of the total with the genera *Polyarthra* being the most commonly found within the group. At this time zooplankton diversity is considered high as only a total of twelve (12) different genera were found in the sample. *Bosmina* was the most commonly observed Cladoceran as it was the only genera observed and accounted for 4.1% of the total sample. The *Copepoda*, (*Cyclopoid nauplii*) was found in this sample and was the most dominant copepod. Copepoda only accounted for 8.8% of the total observed sample.

DISCUSSION

The 2018 management program of Mount Kemble Lake will continue to focus on the control of nuisance densities of plant and algae growth. The target aquatic macrophyte species observed at Mount Kemble Lake in 2017, southern naiad (*N. guadalupensis*). It is recommended that localized applications of the contact aquatic herbicide **Reward/Tribune** continue to be utilized through the season for its ability to selectively control nuisance submerged vegetation by rapid absorption into the target plant. Throughout the 2017 lake management season, the appearance of curly-leaf pondweed was minimal, as only throughout the seasons surveys trace amounts were observed in very few locations. In addition, it is beneficial to allow certain amounts of plants to persist in the lake to provide dissolved oxygen, fish habitat, and compete for nutrients required for nuisance plant and algae development. The growth of leafy pondweed and southern naiad should be encouraged in areas of the lake, such as the northern inlet, where they are not interrupting recreational activities or reducing the aesthetic appeal of the lake.

Copper sulfate will continue to provide the most cost effective and cost efficient management method for controlling nuisance density filamentous and planktonic algae growth. It should be reminded that **Copper Sulfate** has acknowledged negative impacts on zooplankton populations, with localized targeted applications recommended for only nuisance growth of filamentous algae, and limited use on planktonic algae blooms only at times when water clarity is significantly impaired. Numerous other copper and non-copper based algaecides are available and at the request of the Association, SŌLitude Lake Management would be happy to discuss these alternatives.

The management program for 2018 is anticipated to be similar to the 2017 monitoring program, which included at least once per month lake surveys, including lake-wide assessment of the submersed aquatic plant community. Throughout the season the increase monitoring led to more properly timed herbicide applications and the end result was a reduction in the amount of treatment work that needed to be done on the lake overall. In 2017, an alum treatment was not performed and water clarity readings were lower than they have been in the past making it something to consider once again in the 2018 season.

A more intensive management effort for the inlet pond will also be evaluated for 2018, including a possible nutrient mitigation application to reduce phosphorous introduction into Mt. Kemble Lake. During the season two herbicide/algicide applications were made in an effort to reduce that amount of plant and algae growth that was being introduced into the lake. A more elaborate program can be discussed at the request of MKLA.

The current Mount Kemble Lake Water Quality Monitoring Program is well-designed, and provides suitable water quality data allowing for proactive management of the lakes' environment and reduces the opportunity for the development of problematic situations. It is important to continue water quality monitoring on a regular yearly basis over the long-term to build a baseline data record which will assist biologists in developing more quantitative analysis for greatest possible management procedures. In 2017 an additional water quality sampling date was added, which has been able to provide more data of how the lake changes throughout the season, which in turn is beneficial for managing the lake.

SŌLitude Lake Management appreciates the opportunity to be of service to the Mount Kemble Lake Association and looks forward to assisting the Association on the stewardship of Mount Kemble Lake in the 2018 lake management season.

Sincerely,

Carl Cummins

Carl Cummins
Environmental Scientist

APPENDIX

APPENDIX A: WATER QUALITY PARAMETER DESCRIPTION

APPENDIX B: AQUATIC MACROPHYTE GUIDE

APPENDIX C: WATER QUALITY SAMPLING MAP

APPENDIX D: PHYTOPLANKTON ENUMERATION CHARTS APPENDIX E: ZOOPLANKTON ENUMERATION CHARTS APPENDIX F: DISSOLVED OXYGEN – TEMP. PROFILES

APPENDIX G: LAB DATA REPORTS

APPENDIX A: WATER QUALITY PARAMETER DESCRIPTIONS

Temperature

Temperature is measured in degrees Celsius, and is very important to aquatic biota. Several factors affect temperature in a lake system, including air temperature, season, wind, water flow through the system, and shade trees. Turbidity can also increase water temperature as suspended particles absorb sun rays more efficiently. Water depth also affects temperature. In general, deeper water remains cooler during the summer months.

Temperature preferences vary among aquatic biota. Since water temperature typically varies between 5 °C and 30 °C during the season, most aquatic biota can flourish under this wide range of temperatures. Of more concern is thermal shock, which occurs when temperature rapidly changes in a short amount of time. Some aquatic biota can become stressed when temperature changes as little as 1-2 °C in a 24 hour period.

Dissolved Oxygen

Dissolved Oxygen is the measurement of the amount of oxygen freely available to aquatic biota in water. Several factors play a role in affecting the amount of dissolved oxygen in the water. These factors include temperature (warmer water holds less dissolved oxygen), low atmospheric pressure (such as higher altitude) decreases the solubility of oxygen, mineral content of the water can reduce the water's dissolved oxygen capacity, and water mixing (via wind, flow over rocks, or thermal upwelling) increases dissolved oxygen in the water. In addition, an over abundance of organic matter, such as dead algae or plants causes rapid aerobic bacteria growth. During this growth, bacteria consume oxygen during respiration, which can cause the water's dissolved oxygen to decrease.

Dissolved oxygen has a wide range, from 0 mg/L to 20 mg/L. To support diverse aquatic biota, 5-6 mg/L is minimally required, but 9-10 mg/L is an indicator of better overall water quality. Dissolved oxygen reading of below 4 mg/L is stressful to most aquatic organisms, especially fish.

Water Clarity

Transparency (or visibility) is measured with a Secchi disc, and can provide an experienced biologist with a quick determination of a lake's water quality. In short, higher visibility indicates a cleaner (and healthier) aquatic system. Cloudy conditions could indicate nutrient rich sediments entering the lake or excessive algal blooms due to nutrient availability, leading to a degradation of water quality.

Clear conditions allow greater light penetration and the establishment of a deeper photic zone. The photic zone is the depth of active photosynthesis carried out by plants and algae. A byproduct of photosynthesis is dissolved oxygen, required for use by higher aquatic organisms, such as zooplankton and fish.

Total Hardness

Hardness is a measure of dissolved salts in the water, usually calcium, but also magnesium and iron. Hardness is usually influenced by the rock and soil types of the watershed, and the amount of runoff over these surfaces. Hardness can be measured for only calcium content (Hardness (Ca)), or for all three salts, called Total Hardness. Water with Hardness (Ca) less than 10 mg/L can only support sparse aquatic biota. Freshwater typically has a Hardness (Ca) level from 4 to 100 mg/L. In general, the degree of total hardness can be classified according to the table to the right.

Alkalinity

Alkalinity is the measure of the water's capacity to neutralize acids. A higher alkalinity can buffer the water against rapid pH changes, which in turn prevents undue stress on aquatic biota due to fluctuating pH levels. The alkalinity of a lake is primarily a function of the watersheds soil and rock composition. Limestone, dolomite and calcite are all a source of alkalinity. High levels of precipitation in a short amount of time can decrease the waters alkalinity. A typical freshwater lake has an alkalinity of 20-200 mg/L. A lake with a low alkalinity typically also has a low pH, which can limit the diversity of aquatic biota.

pН

The measurement of acidity or alkalinity of the water is called pH (the "potential for hydrogen"). Several factors can impact the pH of a lake, including precipitation in a short amount of time, rock and soil composition of the watershed, algal blooms (increase the pH), and aquatic plant decomposition (decreases the pH). A pH level of 6.5 to 7.5 is considered excellent, but most lake systems fall in the range of 6.0 to 8.5. Aquatic biota can become stressed if the pH drops below 6.0, or increases above 8.5 for an extended amount of time.

Most aquatic biota are adapted to specific pH ranges. When the pH fluctuates rapidly, it can cause changes in aquatic biota diversity. Immature stages of aquatic insects and juvenile fish are more sensitive to low pH values than their adult counterparts. Therefore, a low pH can actually inhibit the hatch rate and early development of these organisms.

Conductivity

Conductivity is the measure of water's ability to conduct an electrical current, and is measured in umhos/cm, the higher the number of charged particles(ions) in the water, the easier for electricity to pass through it. Conductivity is useful in lake management by estimating the dissolved ionic matter in the water, the lower the conductivity, the higher the quality of water (oligotrophic). A higher conductivity usually indicates an abundance of plant nutrients (total phosphorous and nitrate), or eutrophic conditions. Industrial discharge, road salt runoff, and septic tank leaching can increase conductivity. Distilled water has a conductivity of 0.5 to 2.0 umhos/cm, while drinking water conductivity typically ranges from 50to 1,500 umhos/cm. Conductivity below 500 umhos/cm is considered ideal in a lake system.

Nitrate

Nitrates are chemical compounds derived from nitrogen and oxygen. Nitrogen is needed by all plants and animals to make proteins needed for growth and reproduction. Nitrates are generated during plant and animal decomposition, from man-made sources, and from livestock and waterfowl sources. Man-made sources of nitrates include septic system leaching, fertilizer runoff, and improperly treated wastewater. Freshwater lake systems can potentially receive large nitrate inputs from waterfowl, specifically large flocks of Canada geese. An increase in nitrate levels can in turn cause an increase in total phosphorous levels. A nitrate level greater than 0.3 mg/L can promote excessive growth of aquatic plants and algae.

Total Phosphorous

Total phosphorous is a chemical compound derived from phosphorous and oxygen. Total phosphorous is usually present in freshwater in low concentrations, and is often the limiting nutrient to aquatic plant growth. However, man-made sources of phosphorous include septic system leaching, fertilizer runoff, and improperly treated wastewater. These phosphorous inputs usually enter a freshwater lake system during rain events, and bank erosion.

A total phosphorous level greater than 0.03 mg/L can promote excessive aquatic plant growth and decomposition, either in the form of algal blooms, or nuisance quantities of aquatic plants. This process is called eutrophication, and when induced or sped up by man-made nutrient inputs, it is called cultural eutrophication. As a result of this excessive growth, recreational activities, such as swimming, boating, and fishing in the lake can be negatively impacted. In addition, aerobic bacteria will thrive under these conditions, causing a decrease in dissolved oxygen levels which can negatively impact aquatic biota such as fish.

Total Suspended Solids

Total suspended solids refer to all of the particulate matter suspended in the water column. When these solids settle to the bottom of a water body (a process called siltation), they become sediments. There are two components that make up total suspended solids: inorganic and organic. The inorganic portion is usually considerably higher than the organic portion and includes silts, clays, and soils. Organic solids include algae, zooplankton, bacteria and organic debris. All these solids create turbid (or "muddy") conditions. The geology and vegetation of a watershed affect the amount of suspended solids that enter a lake system. Most suspended solids originate from accelerated soil erosion from agricultural operations, logging activities, and construction activities. Another source is the disturbance of bottom sediments from dredging activities, grazing of bottom feeding fish, and recreational activities such as boating.

Ammonia

Ammonia is a type of nitrogen compound used by plants and algae to support growth. Ammonia content in a body of water is influenced by decaying plants and animals, animal waste, industrial waste effluent, agricultural runoff, and atmospheric nitrogen gas transfer. A concentration exceeding $0.30 \, \text{mg/L}$ can promote excessive plant and algae growth. Elevated ammonia levels can increase nitrification, which in turn depletes the oxygen content of water. Extremely high ammonia levels can be toxic to aquatic biota (such as fish).

APPENDIX B: AQUATIC MACROPHYTE GUIDE

Small Duckweed (Lemna minor. Common Names: Small duckweed, water lentil, lesser duckweed. Native.). Small duckweed is a free floating plant, with round to oval-shaped leaf bodies typically referred to as fronds. The fronds are small (typically less than 0.5 cm in diameter), and it can occur in large densities that can create a dense mat on the water's surface. Each frond contains three faint nerves, a single root (a characteristic used to distinguish it from other duckweeds), and no stem. Although it can produce flowers, it usually reproduces via budding at at a tremendous rate. Its population

can double in three to five days. Since it is free floating, it drifts with the wind or water current, and is often found intermixed with other duckweeds. Since it's not attached to the sediment, it derives nutrients directly from the water, and is often associated with eutrophic conditions. It over winters by producing turions late in the season. Small duckweed is extremely nutritious and can provide up to 90% of the dietary needs for waterfowl. It's also consumed by muskrat, beaver and fish, and dense mats of duckweed can actually inhibit mosquito breeding.

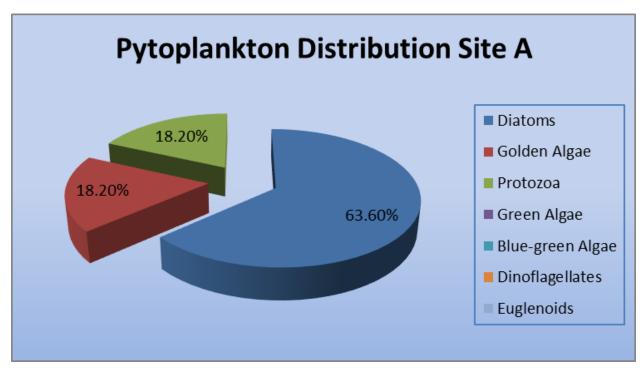
Curly-leaf Pondweed (Potamogeton crispus. Common Name: curly-leaf pondweed. Invasive.): Curly-leaf pondweed has spaghetti-like stems that often reach the surface by mid-June. Its submersed leaves are oblong, and attached directly to the stem in an alternate pattern. The margins of the leaves are wavy and finely serrated, hence its name. No floating leaves are produced. Curly-leaf pondweed can tolerate turbid water conditions better than most other macrophytes. In late summer, Curly-leaf pondweed enters its summer dormancy stage. It naturally dies off (often creating a sudden loss of habitat and releasing nutrients into the water to fuel algae growth) and produces vegetative buds called turions. These turions germinate when the water gets cooler in the autumn and give way to a winter growth form that

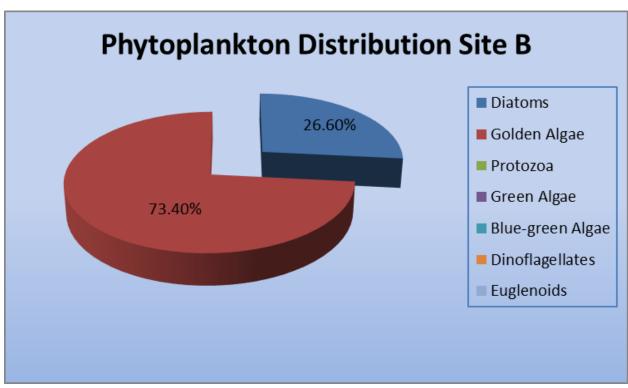
allows it to thrive under ice and snow cover, providing habitat for fish and invertebrates.

Leafy Pondweed (*Potamogeton foliosus*: Common Name: leafy pondweed. **Native**.): Leafy pondweed has freely branched stems that hold slender submersed leaves that become slightly more narrow as they approach the stem. The leaf contains 3-5 veins and often tapers to a point. No floating leaves are produced. It produces early season fruits in tight clusters on short stalks in the leaf axils. These early season fruits are often the first grazed upon by waterfowl during the season. Muskrat, beaver, deer and even moose also graze on the fruit. It inhabits a wide range of

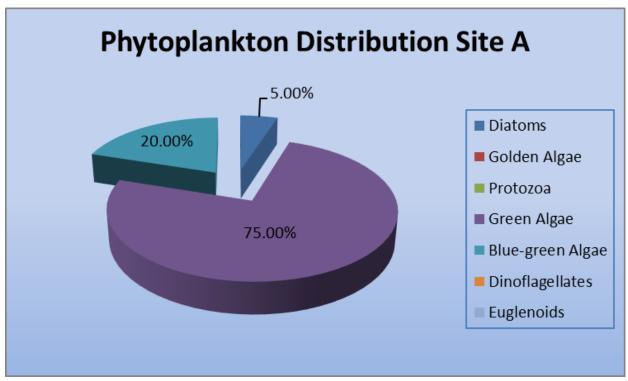
habitats, but usually prefers shallow water. It has a high tolerance for eutrophic conditions, allowing it to even colonize secondary water treatment ponds.

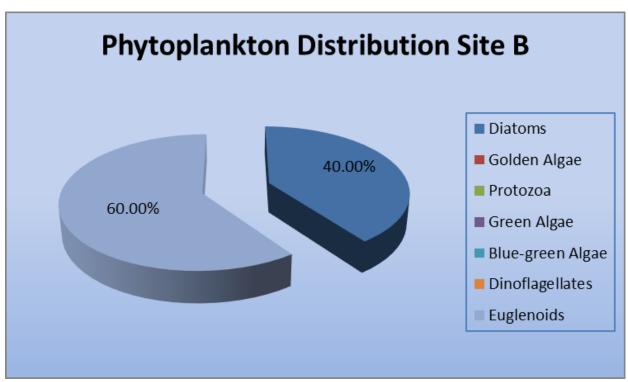
Southern Naiad (Najas guadalupensis. Common Names: Southern water nymph, bushy pondweed. Native.): Southern naiad is an annual aquatic plant that can form dense stands of rooted vegetation. Its ribbon-like leaves are dark-green to greenish-purple, and are wider and less pointed than slender naiad. Flowers occur at the base of the leaves, but are so small, they usually require magnification to detect. Southern naiad is widely distributed, but is less common than slender naiad in northern zones. Southern naiad reproduces by seeds and fragmentation.

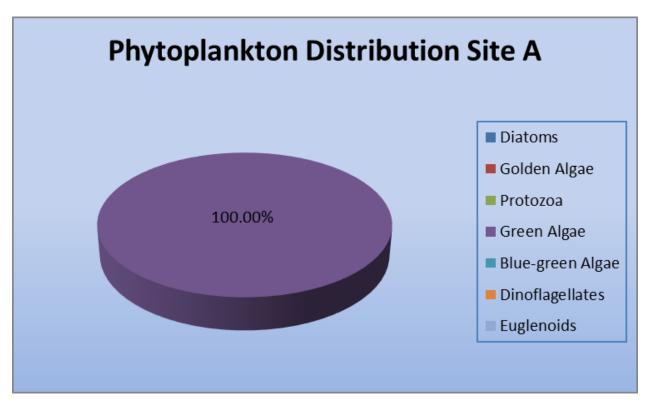


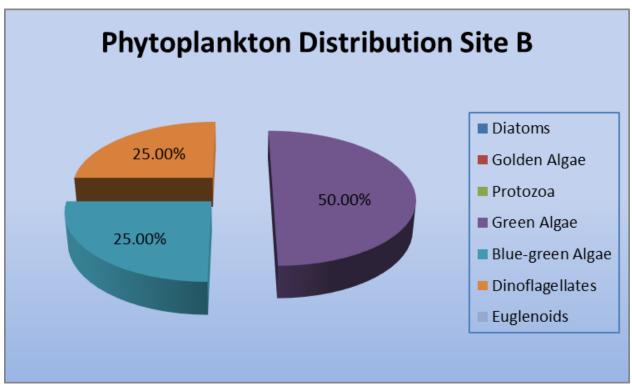


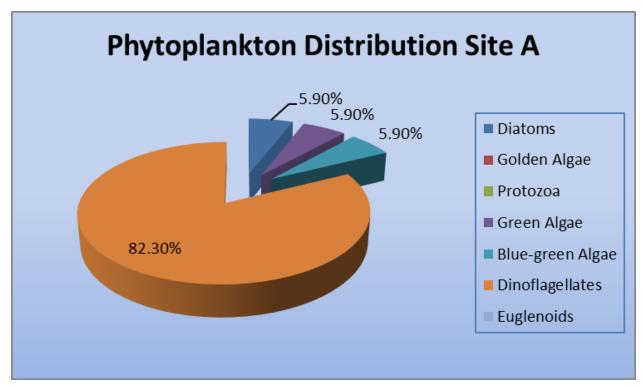
Water-thread Pondweed (Potamogeton diversifolius. Common Names: Water-thread pondweed, variable-leaf pondweed, snailseed pondweed. Native.): Variable-leaf pondweed have freely-branched stems emerging from slender rhizomes. The submersed leaves are narrow and linear with one obvious midvein bordered by a row of hollow cells. The floating leaves are shaped like an ellipse, but are usually less than 4 cm long, Variable-leaf pondweed fruit spikes are

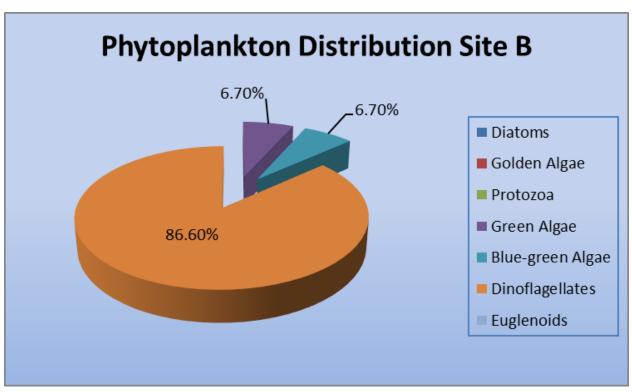

produced in two distinct forms. It occurs in lakes, ponds, rivers and streams and prefers soft sediment and water less than 2 meters deep. Waterfowl graze on the fruit, and local fauna often graze on the stems and leaves.


			MICR	OSCOPIC EXAMI	NATIO	ON OF	WA	ΓER		_		
Sample from: Mt.	Kembl	e Lake)									
Collection Date: 5/	/4/17			Examination Date	: 5/5/1	17		Amount Examined	d: 20	0 ml.		
Site A: North Stati	on (inle	et)		Site B: Lake Station	on			Site C:				
BACILLARIOPHY TA (Diatoms)	A	В	С	CHLOROPHYTA (Green Algae)	Α	В	С	CYANOPHYTA (Blue-green Algae)	Α	В	С	
Asterionella				Ankistrodesmus				Anabaena				
Cyclotella				Chlamydomonas				Anacystis				
Cymbella				Chlorella				Aphanizomenon				
Diatoma				Chlorococcum				Coelosphaerium				
Fragilaria		10		Closterium				Gomphosphseria				
Melosira				Coelastrum				Lyngbya				
Navicula	10			Eudorina				Microcystis				
Nitzschia				Mougeotia				Oscillatoria				
Pinnularia	10			Oedogonium				Pseudoanabaena				
Urosolenia				Oocystis				Synechocystis				
Stephanodiscus				Pandorina				Agmenellum				
Stauroneis				Pediastrum								
Synedra	50	30		Phytoconis				PROTOZOA				
Tabellaria				Rhizoclonium				Actinophyrs	20			
Cocconeis				Scenedesmus								
CHRYSOPHYTA (Golden Algae)	Α	В	С	Spirogyra Staurastrum				EUGLENOPHYTA (Euglenoids)	Α	В	С	
Dinobryon	10	110		Sphaerocystis				Euglena				
Mallomonas	10	110		Ulothrix				Phacus				
Synura	10			Volvox				Trachelomonas				
Tribonema				Zygnema				- radinalana				
Uroglenopsis				Aulacoseira								
or agranapara				Microtinium				PYRRHOPHYTA				
				Cosmerium				(Dinoflagellates)	Α	В	С	
								Ceratium				
								Peridinium				
SITE	Α	В	С	NOTES: This is th	o fire		lina a	yout of 2017 Also	l dos:	oity ic		
TOTAL GENERA:	6	3						event of 2017. Alga gal diversity is cons			е	
TRANSPARENCY:	3'est	4'						considered to be loving is dominated by the				
ORGANISMS PER MILLILITER:	110	150			amou	nts of	proto	zoa were observed				

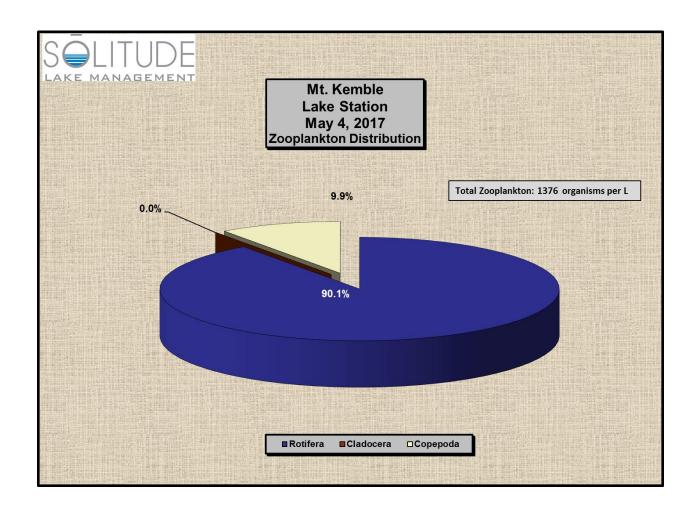


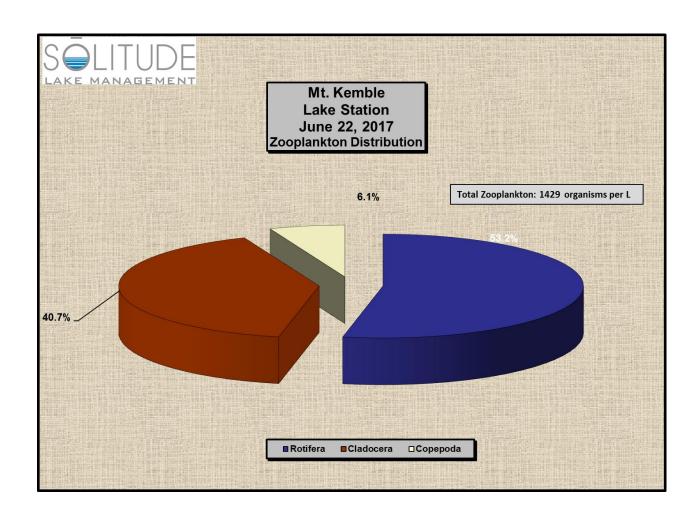

			MIC	ROSCOPIC EXAMI	INATIO	N OF	WAT	ER		<u> </u>	_	
Sample from: Mt. K	Cemble	Lake										
Collection Date: 6/2	22/17			Examination Date: 6/23/17 Amount Examined: 200 ml.								
Site A: North Statio	n (inlet	:)		Site B: Lake Station	on			Site C:				
BACILLARIOPHYT A (Diatoms)	A	В	С	CHLOROPHYTA (Green Algae)	A	В	С	CYANOPHYTA (Blue-green Algae)	Α	В	С	
Asterionella				Ankistrodesmus				Anabaena	40			
Cyclotella				Chlamydomonas				Anacystis				
Cymbella				Chlorella				Aphanizomenon				
Diatoma				Chlorococcum				Coelosphaerium				
Fragilaria	10	10		Closterium				Gomphosphseria				
Melosira				Coelastrum	80			Lyngbya				
Navicula				Eudorina				Microcystis				
Nitzschia				Mougeotia				Oscillatoria				
Pinnularia				Oedogonium				Pseudoanabaena				
Urosolenia				Oocystis				Synechocystis				
Stephanodiscus				Pandorina				Agmenellum				
Stauroneis				Pediastrum								
Synedra		10		Phytoconis				PROTOZOA				
Tabellaria				Rhizoclonium				Actinophyrs				
Cocconeis				Scenedesmus	20							
CHRYSOPHYTA	_		_	Spirogyra				EUGLENOPHYTA				
(Golden Algae)	Α	В	С	Staurastrum	50			(Euglenoids)	Α	В	С	
Dinobryon				Sphaerocystis				Euglena		20		
Mallomonas				Ulothrix				Phacus		10		
Synura				Volvox				Trachelomonas				
Tribonema				Zygnema								
Uroglenopsis				Aulacoseira								
				Microtinium				PYRRHOPHYTA	_			
				Cosmerium				(Dinoflagellates)	Α	В	С	
								Ceratium				
								Peridinium				
SITE	Α	В	С	NOTES: Algal dive	ersity d	ecreas	sed at	site A and increase	d at s	ite B s	ince	
TOTAL GENERA:	5	4		the last sampling	event. [Divers	ity is n	ow considered to be	low a	at both	1	
TRANSPARENCY:	3.75	4.25'		still considered to	be low	at eac	h site	A and decreased at a . Green algae domir	nates	the	•	
ORGANISMS PER MILLILITER:	200	50			erved. \			ere also observed. To increased at each s			nts of	


			MIC	ROSCOPIC EXAM	INATIO	N OF	WATE	ER .		<u> </u>	
Sample from: Mt. Ke	mble L	ake									
Collection Date: 7/20	0/17			Examination Date: 7/21/17 Amount Examined: 200 ml.							
Site A: North Station	(inlet)			Site B: Lake Statio	n			Site C:			
BACILLARIOPHYTA (Diatoms)	Α	В	С	CHLOROPHYTA (Green Algae)	A	В	С	CYANOPHYTA (Blue-green Algae)	Α	В	С
Asterionella				Ankistrodesmus				Anabaena		20	
Cyclotella				Chlamydomonas				Anacystis			
Cymbella				Chlorella				Aphanizomenon			
Diatoma				Chlorococcum				Coelosphaerium			
Fragilaria				Closterium	40	20		Gomphosphseria			
Melosira				Coelastrum	10			Lyngbya			
Navicula				Eudorina				Microcystis			
Nitzschia				Mougeotia				Oscillatoria			
Pinnularia				Oedogonium	20			Pseudoanabaena			
Urosolenia				Oocystis				Synechocystis			
Stephanodiscus				Pandorina				Agmenellum			
Stauroneis				Pediastrum							
Synedra				Phytoconis				PROTOZOA			
Tabellaria				Rhizoclonium				Actinophyrs			
Cocconeis				Scenedesmus							
CHRYSOPHYTA	_			Spirogyra				EUGLENOPHYTA	_	_	
(Golden Algae)	Α	В	С	Staurastrum	60	20		(Euglenoids)	Α	В	С
Dinobryon				Sphaerocystis				Euglena			
Mallomonas				Ulothrix				Phacus			
Synura				Volvox				Trachelomonas			
Tribonema				Zygnema							
Uroglenopsis				Aulacoseira							
				Microtinium				PYRRHOPHYTA		-	
				Cosmerium				(Dinoflagellates)	Α	В	С
				Gloeocystis	10			Ceratium			
								Peridinium		20	
SITE	Α	В	С	NOTES: Since the	last sa	mplina	event	t, the algal diversity h	nas no	t chan	aed
TOTAL GENERA:	5	4		and continues to b	e low at	t each	site. A	Algal density decreas	ed at	site A	
TRANSPARENCY:	4'	5.5'		dominated by gree	n algae	. Site	B is do	continues to be low. ominated by a mix of	blue-	green	
ORGANISMS PER MILLILITER:	140	80		algae, dinoflagellate but continues to be		green	algae	. Water clarity increa	ised a	t both	sites

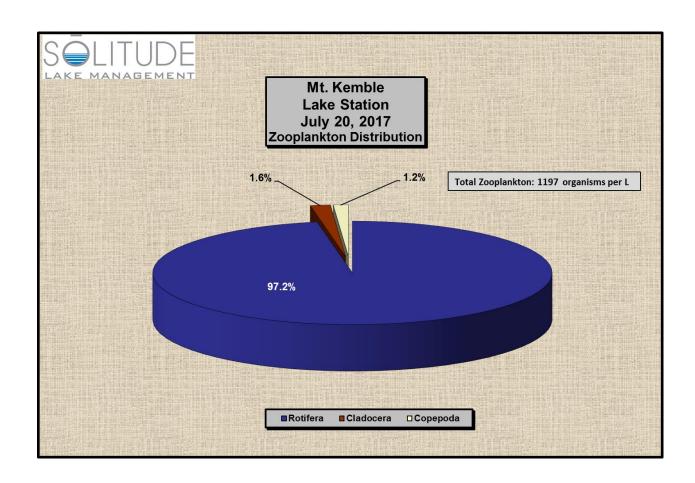


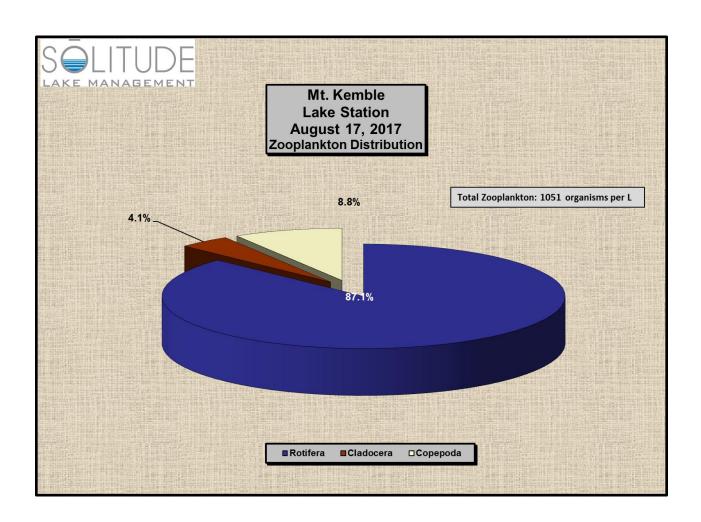
<u> 31 - </u>

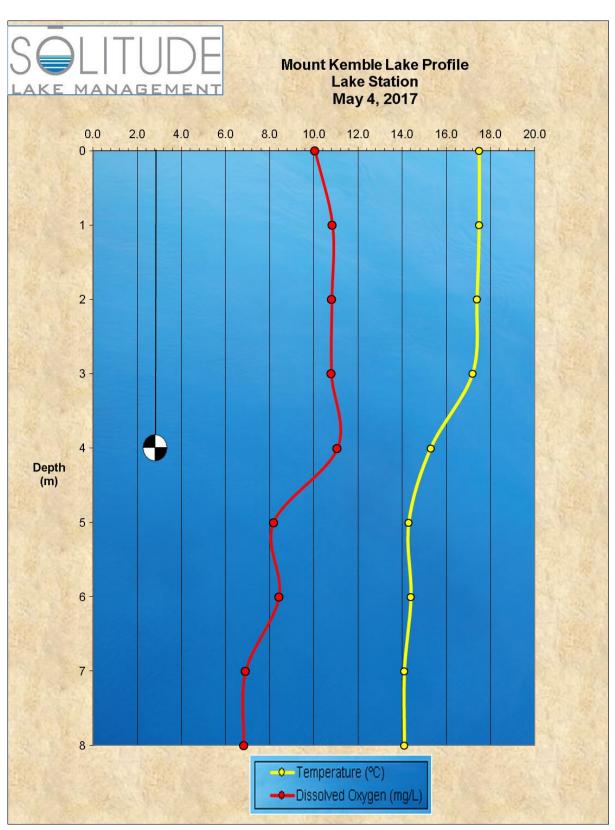

			MIC	ROSCOPIC EXAMI	NATIC	N OF	WAT	ER		1	_	
Sample from: Mt. K	Cemble	Lake										
Collection Date: 8/	17/17			Examination Date:	: 8/18/	17		Amount Examined	200	ml.		
Site A: North Statio	n (inle	t)		Site B: Lake Station	n			Site C:				
BACILLARIOPHYT A (Diatoms)	А	В	С	CHLOROPHYTA (Green Algae)	A	В	С	CYANOPHYTA (Blue-green Algae)	Α	В	С	
Asterionella				Ankistrodesmus				Anabaena				
Cyclotella				Chlamydomonas				Anacystis				
Cymbella				Chlorella				Aphanizomenon	10	10		
Diatoma				Chlorococcum				Coelosphaerium				
Fragilaria	10			Closterium				Gomphosphseria				
Melosira				Coelastrum				Lyngbya				
Navicula				Eudorina				Microcystis				
Nitzschia				Mougeotia				Oscillatoria				
Pinnularia				Oedogonium				Pseudoanabaena				
Urosolenia				Oocystis				Synechocystis				
Stephanodiscus				Pandorina	10			Agmenellum				
Stauroneis				Pediastrum								
Synedra				Phytoconis				PROTOZOA				
Tabellaria				Rhizoclonium				Actinophyrs				
Cocconeis				Scenedesmus								
CHRYSOPHYTA (Golden Algae)	Α	В	С	Spirogyra Staurastrum				EUGLENOPHYTA (Euglenoids)	Α	В	С	
Dinobryon				Sphaerocystis				Euglena				
Mallomonas				Ulothrix				Phacus				
				Volvox				Trachelomonas				
Synura								Tracrieiomorias				
Tribonema				Zygnema Aulacoseira								
Uroglenopsis												
				Microtinium				PYRRHOPHYTA (Dinoflagellates)	Α	В	С	
				Cosmerium		20						
				Gloeocystis		20		Ceratium	140	120		
								Peridinium	140	120		
	1											
SITE	Α	В	С	<u> </u>	1	<u> </u>						
TOTAL GENERA:	4	3						: both sites since the density decreased a				
TRANSPARENCY:	3.5'	7'		well but continues	to be I	ow. Tł	ne ass	semblage is now dor m. A mix of diatoms	minate	ed by		
ORGANISMS PER MILLILITER:	170	150		green algae and b	lue-gre A while	en alg site E	gae we 3 incre	ere also observed. V eased. Clarity at site	Vater	clarity	,	

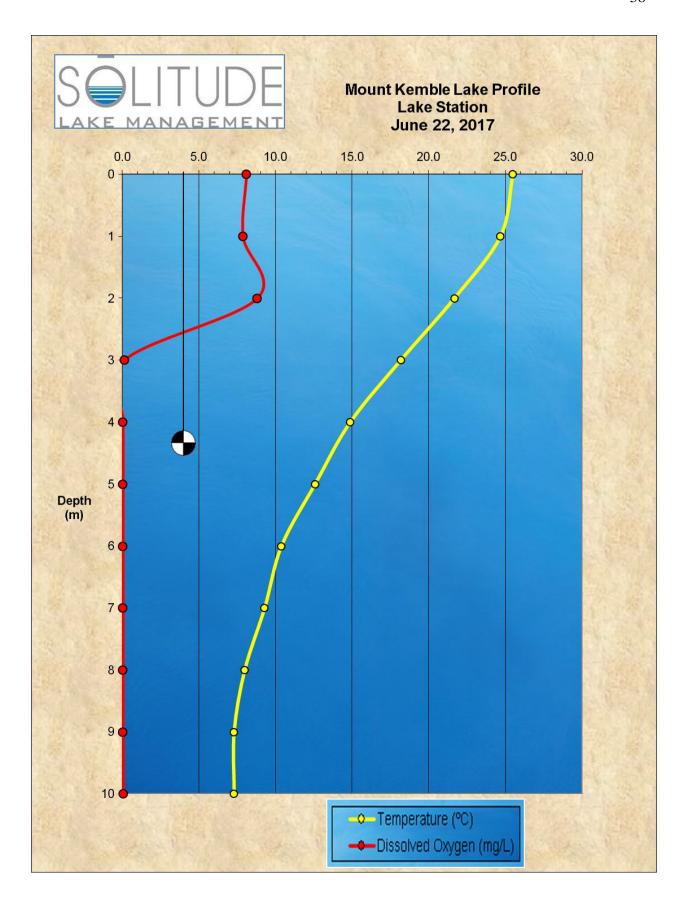


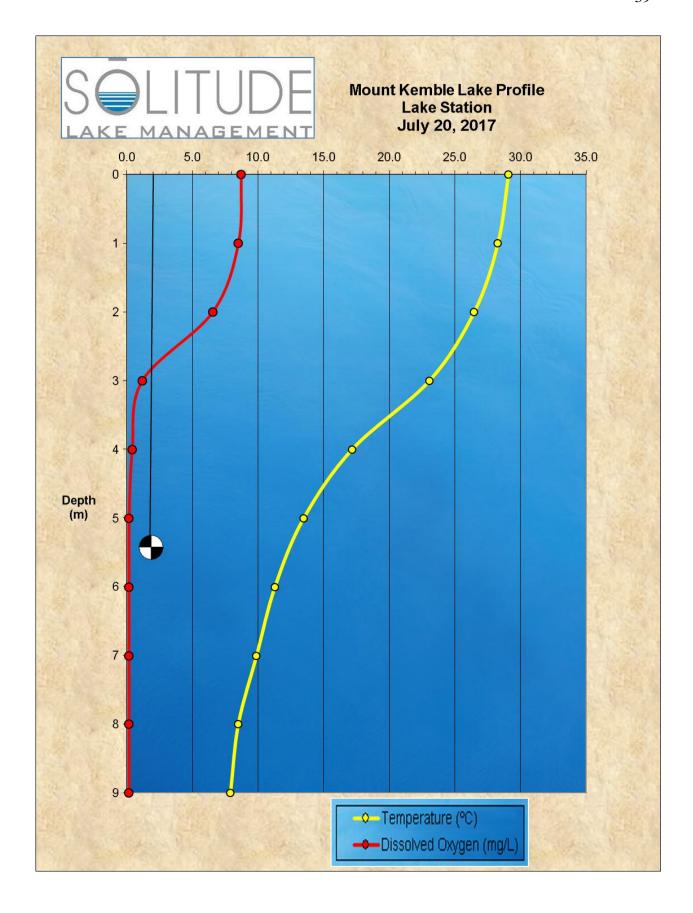
APPENDIX E: ZOOPLANKTON ENUMERATION CHARTS

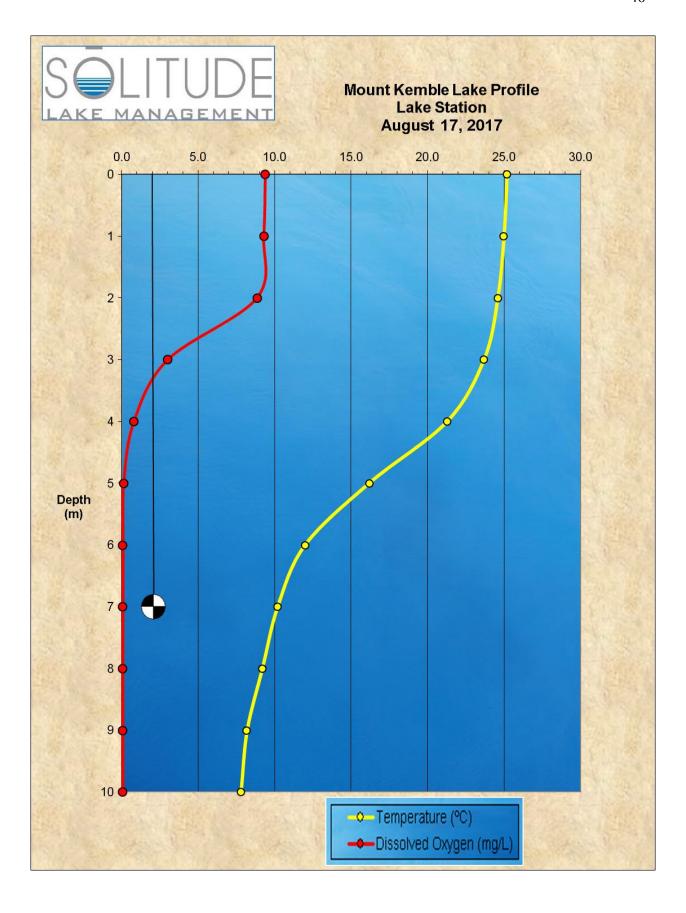

Zoopla	nkton Cou	nt Results						S	ŌI ITI	JDF_
Site: Mt.	Kemble		Date: 5/4/17					LAK	E MANAG	EMENT
					Replicate)	Total/3	x1000 mL	Water	# organisms
Group	Order	Family	Genus	Α	В	С	(# per mL)	(= 1 L)	sampled (L)	per L
Rotifera	Ploima	Synchaetidae	Polyarthra	37	32	39	36.00	36000	68.8	523
			Synchaeta	10	9	3	7.33	7333	68.8	107
		Asplanchnidae	Asplanchna	16	14	18	16.00	16000	68.8	233
		Brachionidae	Brachionus	18	23	26	22.33	22333	68.8	325
			Keratella	3	2	4	3.00	3000	68.8	44
		Trichocercidae	Trichocerca	1			0.33	333	68.8	5
	Flosculariacea	Conochiliidae	Conochilus			1	0.33	333	68.8	5
									Total:	1240
Cladocera	Cladocera								68.8	
									Total:	0
Copepoda	Cyclopoida		Cyclopoid nauplius	6	6	16	9.33	9333	68.8	136
Copepoua	Оусторона		Oyolopola Haupilus		0	10	3.33	3333	Total:	136
			Total Organisms per L	Rotifera	%	Cladocera	%	Copepoda	%	
			1376	1240	90.1%	0	0.0%	136	9.9%	


Zoopla	nkton Cou	nt Results						S	- DI ITI	JDF_
Site: Mt.	Kemble		Date: 6/22/17					LAK	E MANAG	BEMENT
					Replicate		Total/3	x1000 mL	Water	# organisms
Group	Order	Family	Genus	Α	В	С	(# per mL)	(= 1 L)	sampled (L)	per L
Rotifera	Ploima	Synchaetidae	Polyarthra	9	15	14	12.67	12667	68.8	184
			Ploesoma	1			0.33	333	68.8	5
			Synchaeta	4	1	6	3.67	3667	68.8	53
		Asplanchnidae	Asplanchna	1	4	2	2.33	2333	68.8	34
		Brachionidae	Brachionus	8	15	14	12.33	12333	68.8	179
			Kellicottia	2	11	7	6.67	6667	68.8	97
			Keratella	5	5	12	7.33	7333	68.8	107
		Trichocercidae	Trichocerca	4	2		2.00	2000	68.8	29
	Flosculariacea	Conochiliidae	Conochilus	7	3	1	3.67	3667	68.8	53
		Testudinellidae	Filinia	3	1		1.33	1333	68.8	19
									Total:	761
Cladocera	Cladocera	Bosminidae	Bosmina	33	25	48	35.33	35333	68.8	514
			Bosminopsis		13		4.33	4333	68.8	63
		Daphniidae	Daphnia			1	0.33	333	68.8	5
									Total:	581
Copepoda	Cyclopoida		Calanoid nauplius	6	1	1	2.67	2667	68.8	39
	.,,		Cvclopoid adult	3	5	2	3.33	3333	68.8	48
			.,,,					- 200	Total:	87
			Total Organisms per L	Rotifera	%	Cladocera	%	Copepoda	%	
			1429	761	53.2%	581	40.7%	87	6.1%	


Zoopla	nkton Cour	nt Results						_S€	- DLITU	JDE-
Site: Mt.	Site: Mt. Kemble		Date: 7/20/17					LAK	E MANAG	EMENT
					Replicate)	Total/3	x1000 mL	Water	# organisms
Group	Order	Family	Genus	Α	В	С	(# per mL)	(= 1 L)	sampled (L)	per L
Rotifera	Ploima	Synchaetidae	Polyarthra	4	4	5	4.33	4333	68.8	63
			Synchaeta		1	1	0.67	667	68.8	10
		Brachionidae	Brachionus	7	8	4	6.33	6333	68.8	92
			Kellicottia	22	12	16	16.67	16667	68.8	242
			Keratella	46	36	53	45.00	45000	68.8	654
		Trichocercidae	Trichocerca	1	3	2	2.00	2000	68.8	29
	Flosculariacea	Conochiliidae	Conochilus		2	2	1.33	1333	68.8	19
		Testudinellidae	Filinia	4	3	4	3.67	3667	68.8	53
									Total:	1163
Cladocera	Cladocera	Bosminidae	Bosmina	2	1	1	1.33	1333	68.8	19
									Total:	19
Copepoda	Cyclopoida		Cyclopoid nauplius	1	1		0.67	667	68.8	10
	1 '	Cyclopidae	Acanthocyclops			1	0.33	333	68.8	5
		•							Total:	15
			Total Organisms per L	Rotifera	%	Cladocera	%	Copepoda	%	
			1197	1163	97.2%	19	1.6%	15	1.2%	




Zoopla	nkton Cou	nt Results						_S€	- DLITI	JDE-	
Site: Mt.	Kemble		Date: 8/17/17					LAKE MANAE		SEMENT	
					Replicate		Total/3	x1000 mL	Water	# organisms	
Group	Order	Family	Genus	Α	В	С	(# per mL)	(= 1 L)	sampled (L)	per L	
Rotifera	Ploima	Synchaetidae	Polyarthra	43	37	33	37.67	37667	68.8	547	
		Asplanchnidae	Asplanchna	3	1	3	2.33	2333	68.8	34	
		Brachionidae	Brachionus	1			0.33	333	68.8	5	
			Kellicottia	1		1	0.67	667	68.8	10	
			Keratella	5	6	5	5.33	5333	68.8	78	
		Trichocercidae	Trichocerca	1		1	0.67	667	68.8	10	
	Flosculariacea	Conochiliidae	Conochilus	18	15	14	15.67	15667	68.8	228	
		Testudinellidae	Filinia	1			0.33	333	68.8	5	
									Total:	916	
Cladocera	Cladocera	Bosminidae	Bosmina	7		2	3.00	3000	68.8	44	
									Total:	44	
Copepoda	Cyclopoida		Cyclopoid nauplius	2	5	2	3.00	3000	68.8	44	
· ·	<u> </u>		Cyclopoid adult	1	1		0.67	667	68.8	10	
		Cyclopidae	Acanthocyclops		3	5	2.67	2667	68.8	39	
									Total:	92	
			Total Organisms per L	. Rotifera	%	Cladocera	%	Copepoda	%		
			1051	916	87.1%	44	4.1%	92	8.8%	ĺ	



APPENDIX F: DISSOLVED OXYGEN - TEMP. PROFILES

ANALYTICAL REPORT

Lab Number: L1729028

Client: Solitude Lake Management LLC

08/24/17

580 Rockport Rd

Hackettstown, NJ 07840

ATTN: Emily Mayer
Phone: (908) 850-0303
Project Name: MT. KEMBLE
Project Number: MT. KEMBLE

Report Date:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MT. KEMBLE Lab Number: L1729028 Project Number: MT. KEMBLE

Report Date: 08/24/17

SAMPLE RESULTS

Lab ID: L1729028-01 Date Collected: 08/17/17 12:03 NORTH STATION Client ID: Date Received: 08/18/17

Sample Location: MORRISTOWN, NJ Not Specified Field Prep:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough La	b								
Specific Conductance @ 25 C	330		umhos/cm	10	10.	1	-	08/19/17 02:13	121,2510B	VB
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	08/21/17 14:05	121,2540D	DW
Nitrogen, Ammonia	0.028	J	mg/l	0.075	0.024	1	08/19/17 13:18	08/20/17 19:04	121,4500NH3-BH	I AT
Nitrogen, Nitrate	0.034	J	mg/l	0.100	0.032	1	-	08/19/17 00:59	121,4500NO3-F	MR
Phosphorus, Total	0.062		mg/l	0.025	0.007	2.5	08/22/17 11:45	08/22/17 15:30	121,4500P-E	SD

Project Name:MT. KEMBLELab Number:L1729028Project Number:MT. KEMBLEReport Date:08/24/17

SAMPLE RESULTS

Lab ID:L1729028-02Date Collected:08/17/17 12:15Client ID:LAKE STATIONDate Received:08/18/17Sample Location:MORRISTOWN, NJField Prep:Not Specified

Matrix: Water

Parameter	Result	Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl								·		
•										
Specific Conductance @ 25 C	330		umhos/cm	10	10.	1	-	08/19/17 02:13	121,2510B	VB
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	08/21/17 14:05	121,2540D	DW
Nitrogen, Ammonia	0.054	J	mg/l	0.075	0.024	1	08/19/17 13:18	08/20/17 19:05	121,4500NH3-BH	H AT
Nitrogen, Nitrate	ND		mg/l	0.100	0.032	1	-	08/19/17 01:00	121,4500NO3-F	MR
Phosphorus, Total	0.069		mg/l	0.025	0.007	2.5	08/22/17 11:45	08/22/17 15:30	121,4500P-E	SD

08/17/17 12:30

Date Collected:

Project Name: MT. KEMBLE Lab Number: L1729028 Project Number: MT. KEMBLE Report Date: 08/24/17

SAMPLE RESULTS

Lab ID: L1729028-03

BOTTOM SAMPLE STATION Client ID: Date Received: 08/18/17 Not Specified Field Prep:

Sample Location: MORRISTOWN, NJ

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	orough Lab)							
Specific Conductance @ 25 C	380	umhos/cm	10	10.	1	-	08/19/17 02:13	121,2510B	VB
Solids, Total Suspended	12.	mg/l	10	NA	2	-	08/21/17 14:05	121,2540D	DW
Nitrogen, Ammonia	2.55	mg/l	0.075	0.024	1	08/19/17 13:18	08/20/17 19:06	121,4500NH3-BH	AT
Nitrogen, Nitrate	ND	mg/l	0.100	0.032	1	-	08/19/17 01:02	121,4500NO3-F	MR
Phosphorus, Total	0.207	mg/l	0.025	0.007	2.5	08/22/17 11:45	08/22/17 15:30	121,4500P-E	SD

Project Name: MT. KEMBLE
Project Number: MT. KEMBLE

Lab Number: L1729028 **Report Date:** 08/24/17

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab	for sam	ple(s): 0°	1-03 Ba	tch: W0	G1033439-1				
Nitrogen, Nitrate	0.046	J	mg/l	0.100	0.032	1	-	08/18/17 21:42	121,4500NO3-F	MR
General Chemistry - We	estborough Lab	for sam	ple(s): 0'	1-03 Ba	tch: WC	G1033552-1				
Nitrogen, Ammonia	ND		mg/l	0.075	0.024	1	08/19/17 13:18	08/20/17 18:36	121,4500NH3-BI	H AT
General Chemistry - We	estborough Lab	for sam	ple(s): 0'	1-03 Ba	tch: WC	G1033755-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	08/21/17 14:05	121,2540D	DW
General Chemistry - We	estborough Lab	for sam	ple(s): 0°	1-03 Ba	tch: WC	G1034129-1				
Phosphorus, Total	ND		mg/l	0.010	0.003	1	08/22/17 11:45	08/22/17 15:30	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: MT. KEMBLE **Project Number:** MT. KEMBLE

Lab Number: L1729028

Report Date: 08/24/17

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1033439-2				
Nitrogen, Nitrate	102	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1033530-1				
Specific Conductance	100	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1033552-2				
Nitrogen, Ammonia	92	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1034129-2				
Phosphorus, Total	98	-	80-120	-		

Lab Duplicate Analysis
Batch Quality Control

Lab Number: L1729028

08/24/17 Project Number: MT. KEMBLE Report Date:

Parameter	Native Sample	le Di	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03 Q	QC Batch ID:	WG1033530-2	QC Sample:	L1729028-01	Client ID:	NORTH STATION
Specific Conductance @ 25 C	330		330	umhos/cm	0		20

Project Name:

MT. KEMBLE

Lab Number: L1729028

Report Date: 08/24/17

Sample Receipt and Container Information

NO

Were project specific reporting limits specified?

MT. KEMBLE

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: MT. KEMBLE

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1729028-01A	Plastic 120ml unpreserved	Α	7	7	5.1	Υ	Absent		NO3-4500(2),COND-2510(1)
L1729028-01B	Plastic 500ml H2SO4 preserved	Α	<2	<2	5.1	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1729028-01C	Plastic 950ml unpreserved	Α	7	7	5.1	Υ	Absent		TSS-2540(7)
L1729028-02A	Plastic 120ml unpreserved	Α	7	7	5.1	Υ	Absent		NO3-4500(2),COND-2510(1)
L1729028-02B	Plastic 500ml H2SO4 preserved	Α	<2	<2	5.1	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1729028-02C	Plastic 950ml unpreserved	Α	7	7	5.1	Υ	Absent		TSS-2540(7)
L1729028-03A	Plastic 120ml unpreserved	Α	7	7	5.1	Υ	Absent		NO3-4500(2),COND-2510(1)
L1729028-03B	Plastic 500ml H2SO4 preserved	Α	<2	<2	5.1	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1729028-03C	Plastic 950ml unpreserved	Α	7	7	5.1	Υ	Absent		TSS-2540(7)

	NEW JERSEY	Service Centers			2000						Iai_110.00241713.30	
ALPHA	CHAIN OF	Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke	r Way		Page l of		Date Re	c'd 🦿	11 -	11-		
Westborough, MA 0158	CUSTODY Mansfield, MA 02048	Tonawanda, NY 14150: 275 (Cooper Ave, Suite 105		[01]		in Lal		318	117	ALPHA Job # 02	N
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd	Project Information				Deliv	erables					8
FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: M+	Kemble.				NJ Full /	Doduce			Billing Information	
CIII 11 C		Project Location:	ristown &	T		_					Same as Client Ir	ıfo
Client Information		Project #	7)	3		_	EQuIS (1	File)	∐ EC	QuIS (4 File)	PO#	
Client: SLM		(Use Project name as F	Project #)			_	Other					
Address: 310 Fac	st Washington	Project Manager C.A					atory Red				Site Information	To like the
Alle SuiteC	. Washindlan It	ALPHAQuote #:	of my	V			SRS Res				Is this site impacted by	
Prione: 400-75	5-0303	Turn-Around Time			Marie To Sales and		SRS Impa				Petroleum? Yes	
Fax:		Chand	d Due	Date:			NJ Groun	d Water	Quality S	tandards	Petroleum Product:	
Email: EMayer	CO Stitude la le o	Rush (only if pre approved	,				NJ IGW S	PLP Lea	chate Cr	iteria		
These samples have l	heen previously analyza	ما ادر ۱۸۱۸		Days:		1	Other					
For EPH, selection is	For VOC, selection	Other project specific	requirements/ser-			ANAL'	/SIS				Sample Filtration	T
REQUIRED:	is REQUIRED:	Billing-MI	N' RAM	of Caul	Kin.	5	\$		\$		Done	- 0
Category 1	1,4-Dioxane	Please specify Metals	or TAI	A result	7 77 0	Phosphorus	57	3	Nitogra		Lab to do	a
Category 2	8011	, and the state of	IAL.	"y	~	20	党首	5	2		Preservation	Ī,
						8	され	17	2		Lab to do	В
ALPHA Lab ID			0 " "				7 18	3	8		(Plassa Specific but a	
(Lab Use Only)	Sam	ple ID	Collection	Sample	1	Total	N'trate	Conductivity	E		(Please Specify below)	t
29028-01	Mach Stat	rion	Date Tim		Initials	Total	2 2	3 -	Ammonia	1 1	Sample Specific Comment	- 1
00		tion	8/17/17 12:0		TS	XI	14	V	7		oumple opecific comment	s e
5}	1		8/17/17 12:1		ITS	X	ZZ		}			
	ROTTOTY SAY	nple Station	8/17/17/12:3	0 2	TS	X	10			 		\dashv
						1			7			$ \square$
												\perp
							1	+				\perp
								-	+			\dashv
						\vdash	+	-+	+	-+		\perp
		-				\neg	+-+	-+	+	-		\perp
Preservative Code: (Container Code						+		+	-		
A = None	P = Plastic W	estboro: Certification No				0 0		0 0	+			
C-11110	A = Amber Glass M. V = Vial	ansfield: Certification No.	: MA015	Con	tainer Type	$V \mid V$	V	00	1 1		Please print clearly, legil	bly
$D = H_2SO_4$	G = Glass				-	A	1	1 11	+	$\overline{}$	and completely. Sample	s can
	B = Bacteria Cup C = Cube			P	reservative) <i>H</i>	A	AID			not be logged in and turnaround time clock wi	
G = NaHSO ₄) = Other	Relinquished By	: Da	ite/Time		111		110			start until any ambiguitie	II not
	= Encore	-Mily Mayer	8/18/1-		Re	ceived E			Date/T	ime	resolved. BY EXECUTIN	IG
K/E = Zn Ac/NaOH D O = Other	= BOD Bottle	You Pap			Second I		AL	3/1	8/17	1044	THIS COC, THE CLIENT	_
		AMGOI BAT	242	,	11	133		871	8/	930	HAS READ AND AGREE TO BE BOUND BY ALPH	S
Form No: 01-14 HC (rev. 30-5	Sept-2013)	1 1 1 1 1 1 1	0/18	5540	-4-			3	18/17	2200	TERMS & CONDITIONS	
					****						(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L1725207

Client: Solitude Lake Management LLC

580 Rockport Rd

MOUNT KEMBLE

Hackettstown, NJ 07840

ATTN: Emily Mayer
Phone: (908) 850-0303
Project Name: MOUNT KEMBLE

Report Date: 07/27/17

Project Number:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MOUNT KEMBLE Project Number: MOUNT KEMBLE

Lab Number: L1725207

Report Date: 07/27/17

SAMPLE RESULTS

Lab ID: L1725207-01 NORTH STATION Client ID: Sample Location: Not Specified

Matrix:

Date Collected: Date Received: 07/20/17 12:59

Water

07/21/17 Not Specified Field Prep:

Parameter	Result	Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lal	b								
Specific Conductance @ 25 C	320		umhos/cm	10	10.	1	-	07/21/17 23:20	1,9050A	AS
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	07/22/17 05:18	121,2540D	VB
Nitrogen, Ammonia	0.056	J	mg/l	0.075	0.022	1	07/24/17 12:17	07/24/17 22:35	121,4500NH3-BH	AT
Nitrogen, Nitrate	0.039	J	mg/l	0.100	0.032	1	-	07/25/17 23:13	121,4500NO3-F	MR
Phosphorus, Total	0.037		mg/l	0.010	0.003	1	07/27/17 05:45	07/27/17 10:38	121,4500P-E	SD

L1725207

07/27/17

Project Name:MOUNT KEMBLELab Number:Project Number:MOUNT KEMBLEReport Date:

SAMPLE RESULTS

Lab ID:L1725207-02Date Collected:07/20/17 13:27Client ID:LAKE STATIONDate Received:07/21/17Sample Location:Not SpecifiedField Prep:Not Specified

Dilution Date Date Analytical Factor Prepared Analyzed Method MDL **Parameter** Result Qualifier Units RL **Analyst** General Chemistry - Westborough Lab Specific Conductance @ 25 C 310 umhos/cm 10 10. 1 07/21/17 23:20 1,9050A AS NA VΒ Solids, Total Suspended ND 5.0 1 07/22/17 05:18 121,2540D mg/l Nitrogen, Ammonia ND 0.075 0.022 1 07/24/17 12:17 07/24/17 22:37 121,4500NH3-BH AT mg/l Nitrogen, Nitrate 0.100 0.032 07/25/17 23:14 121,4500NO3-F ND mg/l 1 MR 07/27/17 05:45 07/27/17 10:40 Phosphorus, Total 0.027 mg/l 0.010 0.003 1 121,4500P-E SD

Matrix:

Water

Project Name: MOUNT KEMBLE
Project Number: MOUNT KEMBLE

Lab Number: L1725207 **Report Date:** 07/27/17

SAMPLE RESULTS

Lab ID: L1725207-03

Client ID: BOTTOM SAMPLE STATION

Sample Location: Not Specified Matrix: Water

Date Collected: 07/20/17 13:36

Date Received: 07/21/17
Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab)							
Specific Conductance @ 25 C	340	umhos/cm	10	10.	1	-	07/21/17 23:20	1,9050A	AS
Solids, Total Suspended	5.4	mg/l	5.0	NA	1	-	07/22/17 05:18	121,2540D	VB
Nitrogen, Ammonia	0.921	mg/l	0.075	0.022	1	07/24/17 12:17	07/24/17 22:38	121,4500NH3-BH	AT
Nitrogen, Nitrate	ND	mg/l	0.100	0.032	1	-	07/25/17 23:20	121,4500NO3-F	MR
Phosphorus, Total	0.062	mg/l	0.010	0.003	1	07/27/17 05:45	07/27/17 10:41	121,4500P-E	SD

Project Name: MOUNT KEMBLE
Project Number: MOUNT KEMBLE

Lab Number: L1725207 **Report Date:** 07/27/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab for sam	nple(s): 0	1-03 Ba	tch: WC	G1024867-1	ſ			
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	07/22/17 05:18	121,2540D	VB
General Chemistry - We	estborough Lab for sam	nple(s): 0	1-03 Ba	tch: WC	G1025242-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.022	1	07/24/17 12:17	07/24/17 22:22	121,4500NH3-B	H AT
General Chemistry - We	estborough Lab for sam	nple(s): 0	1-03 Ba	tch: WC	G1025650-1				
Nitrogen, Nitrate	ND	mg/l	0.100	0.032	1	-	07/25/17 22:37	121,4500NO3-l	F MR
General Chemistry - We	estborough Lab for sam	nple(s): 0	1-03 Ba	tch: WC	G1025993-1				
Phosphorus, Total	ND	mg/l	0.010	0.003	1	07/27/17 05:45	07/27/17 10:11	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: MOUNT KEMBLE
Project Number: MOUNT KEMBLE

Lab Number: L1725207

Report Date: 07/27/17

Parameter	LCS %Recovery Qual	LCSD %Recovery Qu	%Recovery ual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1024847-1				
Specific Conductance	99	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1025242-2				
Nitrogen, Ammonia	99	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1025650-2	2			
Nitrogen, Nitrate	99	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1025993-2	2			
Phosphorus, Total	100	-	80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MOUNT KEMBLE **Project Number:** MOUNT KEMBLE Lab Number:

L1725207

Report Date:	07/27/17	
--------------	----------	--

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits	RPD Qua	RPD al Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01-03	QC Batch II	D: WG1025242-4	QC Sample: L17	725207-01 Clier	nt ID: NOF	RTH STATION
Nitrogen, Ammonia	0.056J	4	3.88	97	-	-	80-120	-	20

L1725207

Lab Duplicate Analysis
Batch Quality Control

Lab Number: MOUNT KEMBLE

07/27/17 **Project Number:** MOUNT KEMBLE Report Date:

Parameter	Native Sam	ple D	Suplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG1025242-3	QC Sample:	L1725207-01	Client ID:	NORTH STATION
Nitrogen, Ammonia	0.056J		0.049J	mg/l	NC		20

Project Name:

Lab Number: L1725207

Report Date: 07/27/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

MOUNT KEMBLE

Cooler Information

Project Name:

Cooler Custody Seal

Project Number: MOUNT KEMBLE

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1725207-01A	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		NO3-4500(2),COND-9050(28)
L1725207-01B	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.8	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1725207-01C	Plastic 950ml unpreserved	Α	7	7	3.8	Υ	Absent		TSS-2540(7)
L1725207-02A	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		NO3-4500(2),COND-9050(28)
L1725207-02B	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.8	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1725207-02C	Plastic 950ml unpreserved	Α	7	7	3.8	Υ	Absent		TSS-2540(7)
L1725207-03A	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		NO3-4500(2),COND-9050(28)
L1725207-03B	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.8	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1725207-03C	Plastic 950ml unpreserved	Α	7	7	3.8	Υ	Absent		TSS-2540(7)

NO

	NOT 8 +840	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker N Tonawanda, NY 14150: 275 Co Project Information Project Name: Project Location: Project # (Use Project name as P Project Manager: ALPHAQuote #: Turn-Around Time	Nay Poper Ave, Suite 10 T- Vel M Toject #) X	lele	Page		Deliv	in erable NJ F EQuI Othe latory SRS SRS	ull / Re S (1 F r Requi Reside	educed ile) iremen ential/l		EQuIS esiden ater	(4 File) F	ALPHA Job # L17252 57 Billing Information Same as Client Info Po # Site Information Is this site impacted by Petroleum? Yes Petroleum Product:
Fax: Email: DANLY W	Calculation Com	Standard Rush (only if pre approved		Due Date: # of Days:				NJ IG		LP Le	achate	Criter	ia		
These samples have be							ANAI			de la constantina		-		+	Sample Filtration
For EPH, selection is REQUIRED: Category 1 Category 2	For VOC, selection is REQUIRED: 1,4-Dioxane 8011	Other project specific in the	Du 1	comments: LLPO(T iV	Resu mg	より	Suspended 1	Conductivity	aire	Onia	1 Phosphorus			[[F	Done Lab to do Preservation Lab to do Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	Colle Date	ction Time	Sample Matrix	Sampler's Initials	16ha	andlu	Nitrail	Ammonia	Total				Sample Specific Comments e
25207 - 01	North Sta	ution	7/20/17	12:59	1.		4	~	X	V	7			十	
-07	Jake Stan		7/20/17		ĭ		Ź	S	\frac{1}{2}	Ŷ	\Im			\top	
-03	Bottom Samo	ple Station			L		Z	X	X	X	S	\neg		\top	
	7	V 3122 VV	10001	15.04								\dashv		十	
														\top	
														+	
	Container Code	Westboro: Certification N	o: MA935									-		+	
$B = HCI$ $C = HNO_3$ $D = H_2SO_4$	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Mansfield: Certification N				reservative						+		-	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Bob balhson	yer	Date/T 7/2017 7/2011	ime /1:25m /5:15	Bol 1	Receive And And And And And And And And And And	ni	-		7/2.	13	ime 17:2: 110 200	5	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

ANALYTICAL REPORT

Lab Number: L1714470

Client: Solitude Lake Management LLC

580 Rockport Rd

Hackettstown, NJ 07840

ATTN: Emily Mayer
Phone: (908) 850-0303

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Report Date: 05/11/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Lab Number: L1714470

Report Date: 05/11/17

SAMPLE RESULTS

Lab ID: L1714470-01
Client ID: NORTH STATION
Sample Location: MORRISTOWN, NJ

Matrix: Water

Date Collected: 05/04/17 10:15

Date Received: 05/04/17 Field Prep: Not Specified

Parameter	Result	Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	orough Lal)								
Specific Conductance @ 25 C	360		umhos/cm	10	10.	1	-	05/05/17 01:10	1,9050A	VB
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/06/17 18:44	121,2540D	RP
Nitrogen, Ammonia	0.043	J	mg/l	0.075	0.022	1	05/05/17 15:01	05/08/17 21:29	121,4500NH3-BH	AT
Nitrogen, Nitrate	0.471		mg/l	0.100	0.022	1	-	05/05/17 00:48	121,4500NO3-F	MR
Phosphorus, Total	0.057		mg/l	0.010	0.003	1	05/09/17 12:15	05/10/17 09:51	121,4500P-E	SD

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Lab Number: L1714470

Report Date: 05/11/17

SAMPLE RESULTS

Lab ID: L1714470-02
Client ID: LAKE STATION
Sample Location: MORRISTOWN, NJ

Matrix: Water

Date Collected: 05/04/17 11:10

Date Received: 05/04/17 Field Prep: Not Specified

Parameter	Result	Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab)								
Specific Conductance @ 25 C	350		umhos/cm	10	10.	1	-	05/05/17 01:10	1,9050A	VB
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/06/17 18:44	121,2540D	RP
Nitrogen, Ammonia	0.024	J	mg/l	0.075	0.022	1	05/05/17 15:01	05/08/17 21:30	121,4500NH3-BH	AT
Nitrogen, Nitrate	0.386		mg/l	0.100	0.022	1	-	05/05/17 00:53	121,4500NO3-F	MR
Phosphorus, Total	0.021		mg/l	0.010	0.003	1	05/09/17 12:15	05/10/17 09:53	121,4500P-E	SD

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Lab Number: L1714470

Report Date: 05/11/17

SAMPLE RESULTS

Lab ID: L1714470-03

Client ID: BOTTOM SAMPLE STATION

Sample Location: MORRISTOWN, NJ

Matrix: Water

Date Collected: 05/04/17 11:20

Date Received: 05/04/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab)								
Specific Conductance @ 25 C	340	ı	umhos/cm	10	10.	1	-	05/05/17 01:10	1,9050A	VB
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/06/17 18:44	121,2540D	RP
Nitrogen, Ammonia	0.084		mg/l	0.075	0.022	1	05/05/17 15:01	05/08/17 21:33	121,4500NH3-BH	AT
Nitrogen, Nitrate	0.416		mg/l	0.100	0.022	1	-	05/05/17 00:54	121,4500NO3-F	MR
Phosphorus, Total	0.008	J	mg/l	0.010	0.003	1	05/09/17 12:15	05/10/17 09:54	121,4500P-E	SD

Project Name:MOUNT KEMBLE LAKELab Number:L1714470Project Number:MOUNT KEMBLE LAKEReport Date:05/11/17

SAMPLE RESULTS

 Lab ID:
 L1714470-04
 Date Collected:
 05/04/17 12:05

 Client ID:
 INLET STATION
 Date Received:
 05/04/17

Client ID: INLET STATION Date Received: 05/04/17
Sample Location: MORRISTOWN, NJ Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lal	b								
Phosphorus, Total	0.005	J	mg/l	0.010	0.003	1	05/09/17 12:15	05/10/17 09:55	121,4500P-E	SD

Project Name:MOUNT KEMBLE LAKELab Number:L1714470Project Number:MOUNT KEMBLE LAKEReport Date:05/11/17

SAMPLE RESULTS

Lab ID:L1714470-05Date Collected:05/04/17 12:15Client ID:OUTLET STATIONDate Received:05/04/17Sample Location:MORRISTOWN, NJField Prep:Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Phosphorus, Total	0.022		mg/l	0.010	0.003	1	05/09/17 12:15	05/10/17 09:58	121,4500P-E	SD

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Lab Number: L1714470 **Report Date:** 05/11/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for s	sample(s): 01	I-03 Ba	tch: WC	G1000496-1				
Nitrogen, Nitrate	ND	mg/l	0.100	0.022	1	-	05/05/17 00:36	121,4500NO3-F	MR
General Chemistry - W	estborough Lab for s	sample(s): 01	I-03 Ba	tch: WC	91000607-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.022	1	05/05/17 15:01	05/08/17 21:11	121,4500NH3-BI	H AT
General Chemistry - W	estborough Lab for s	sample(s): 01	I-03 Ba	tch: WC	G1001054-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	05/06/17 18:44	121,2540D	RP
General Chemistry - W	estborough Lab for s	sample(s): 01	I-05 Ba	tch: WC	G1001570-1				
Phosphorus, Total	ND	mg/l	0.010	0.003	1	05/09/17 12:15	05/10/17 09:32	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: MOUNT KEMBLE LAKE

Lab Number:

L1714470

Project Number: MOUNT KEMBLE LAKE

Report Date: 05/11/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG10004	96-2				
Nitrogen, Nitrate	100	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG10005	11-1				
Specific Conductance	100	-		99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG10006	07-2				
Nitrogen, Ammonia	95	-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG10015	70-2				
Phosphorus, Total	96	-		80-120	-		

Project Name:MOUNT KEMBLE LAKELab Number:L1714470Project Number:MOUNT KEMBLE LAKEReport Date:05/11/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	oler pH de		Pres	Seal	Analysis(*)
L1714470-01A	Plastic 250ml unpreserved	Α	7	4.9	Υ	Absent	NO3-4500(2),COND-9050(28)
L1714470-01B	Plastic 500ml H2SO4 preserved	Α	<2	4.9	Υ	Absent	TPHOS-4500(28),NH3-4500(28)
L1714470-01C	Plastic 950ml unpreserved	Α	7	4.9	Υ	Absent	TSS-2540(7)
L1714470-02A	Plastic 250ml unpreserved	Α	7	4.9	Υ	Absent	NO3-4500(2),COND-9050(28)
L1714470-02B	Plastic 500ml H2SO4 preserved	Α	<2	4.9	Υ	Absent	TPHOS-4500(28),NH3-4500(28)
L1714470-02C	Plastic 950ml unpreserved	Α	7	4.9	Υ	Absent	TSS-2540(7)
L1714470-03A	Plastic 250ml unpreserved	Α	7	4.9	Υ	Absent	NO3-4500(2),COND-9050(28)
L1714470-03B	Plastic 500ml H2SO4 preserved	Α	<2	4.9	Υ	Absent	TPHOS-4500(28),NH3-4500(28)
L1714470-03C	Plastic 950ml unpreserved	Α	7	4.9	Υ	Absent	TSS-2540(7)
L1714470-04A	Plastic 250ml H2SO4 preserved	Α	<2	4.9	Υ	Absent	TPHOS-4500(28)
L1714470-05A	Plastic 250ml H2SO4 preserved	Α	<2	4.9	Υ	Absent	TPHOS-4500(28)

Address: 580 Roca Harvetts tow Phone: 908 - 850 Fax: Email: E Mayer @ These samples have b	NT 07840 -0363 Solite (delake-com	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: MOUNT ISTOWN, DT Project Location: MOUNT ISTOWN, DT Project # Mount Kemble Falle (Use Project name as Project #) Project Manager: Emily Hayer ALPHAQuote #: Turn-Around Time Standard Due Date: Rush (only if pre approved) # of Days: ed by Alpha				e f	Deliv	Date Rec'd in Lab Deliverables NJ Full / Reduced EQuIS (1 File) EQuIS (4 File) Other Regulatory Requirement SRS Residential/Non Residential SRS Impact to Groundwater NJ Ground Water Quality Standards NJ IGW SPLP Leachate Criteria Other ANALYSIS						e)	Billing Information Same as Client Info PO# Site Information Is this site impacted by Petroleum? Yes Petroleum Product:		
Category 1 Category 2	For VOC, selection is REQUIRED: 1,4-Dioxane 8011	Other project specific re-Dilling Lind Lid - Dilling Lid - Left resul Please specify Metals o				Total Phosphorus Total Suspended Solicus Nitrate (Sintscouns-F							Done Lab to do Preservation Lab to do (Please Specify below)				
ALPHA Lab ID (Lab Use Only)		mple ID	Sample Matrix	Sampler's Initials	Total	Total	Nitrate (THE RESERVE TO SHAPE					Sample Specific Comments e				
14470-01	North Station		5/4/17	10:15 AM	L	EM	×	×	×	×	X		-				
<u>08</u> 33	Lake Station		\$14/17	11:10 AM	<u> </u>	EM	×	X	X	×	×		_	_			
	hottom Samp		5/4/17	11:20AH	L	EM	×	×	×	×	×		_	_			
04	Inlet Statio		5/4/17	12:05pm	L	EM	×					-		\dashv			
05	Outlet Stat	(011	5/4/17	12:15pm	L	EM	J				-	\dashv	-	_			
									-	-	\rightarrow	\dashv	-	\dashv			
		-										\rightarrow	_	-			
										-	-	-+	-				
									\dashv	-		_	_	\dashv			
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	P = Plastic	Westboro: Certification No		tainer Type	PPPPP DAADA						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not						
F = MeOH	C = Cube O = Other	Relinquished B	Date/T	ime	o F	Receiv	ed By:				Date/T	ime		start until any ambiguities are resolved. BY EXECUTING			
$H = Na_2S_2O_3$	C = Other E = Encore D = BOD Bottle	Kogg Lago	V Je (B	5/4/17	13:55 18:35 248	5 Kngy box				5/4/17 17:55 5/4/17 17:55 5/4/17 2238			_	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.			
Form No: 01-14 HC (rev. 30	-Sept-2013)		0			0.00									(See reverse side.)		

ANALYTICAL REPORT

Lab Number: L1721520

Client: Solitude Lake Management LLC

580 Rockport Rd

Hackettstown, NJ 07840

ATTN: Emily Mayer
Phone: (908) 850-0303

entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Report Date: 06/29/17

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MOUNT KEMBLE LAKE Project Number: MOUNT KEMBLE LAKE

Lab Number: L1721520

Report Date: 06/29/17

SAMPLE RESULTS

Lab ID: L1721520-01 NORTH STATION Client ID: Sample Location: MORRISTOWN, NJ

Matrix: Water Date Collected: 06/22/17 12:46

Date Received: 06/23/17 Not Specified Field Prep:

Parameter	Result	Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	orough Lab)								
Specific Conductance @ 25 C	340		umhos/cm	10	10.	1	-	06/24/17 00:15	1,9050A	AS
Solids, Total Suspended	5.3		mg/l	5.0	NA	1	-	06/25/17 20:35	121,2540D	RP
Nitrogen, Ammonia	0.051	J	mg/l	0.075	0.022	1	06/28/17 15:53	06/28/17 22:32	121,4500NH3-BH	AT
Nitrogen, Nitrate	ND		mg/l	0.100	0.022	1	-	06/24/17 00:30	121,4500NO3-F	MR
Phosphorus, Total	0.045		mg/l	0.010	0.003	1	06/28/17 10:00	06/29/17 09:44	121,4500P-E	SD

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Lab Number: L1721520

Report Date: 06/29/17

SAMPLE RESULTS

Lab ID: L1721520-02
Client ID: SOUTH STATION

Sample Location: MORRISTOWN, NJ

Matrix: Water

Date Collected: 06/22/17 13:10

Date Received: 06/23/17 Field Prep: Not Specified

Parameter	Result	Qualific	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough La	b								
Specific Conductance @ 25 C	340		umhos/cm	10	10.	1	-	06/24/17 00:15	1,9050A	AS
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/25/17 20:35	121,2540D	RP
Nitrogen, Ammonia	0.061	J	mg/l	0.075	0.022	1	06/28/17 15:53	06/28/17 22:35	121,4500NH3-BH	AT
Nitrogen, Nitrate	ND		mg/l	0.100	0.022	1	-	06/24/17 00:35	121,4500NO3-F	MR
Phosphorus, Total	0.035		mg/l	0.010	0.003	1	06/28/17 10:00	06/29/17 09:48	121,4500P-E	SD

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Lab Number:

L1721520

Report Date:

06/29/17

SAMPLE RESULTS

Lab ID: L1721520-03

BOTTOM SAMPLE STATION

Sample Location: MORRISTOWN, NJ

Matrix: Water

Client ID:

Date Collected: 06/22/17 13:17

Date Received: 06/23/17

Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab)							
Specific Conductance @ 25 C	370	umhos/cm	10	10.	1	-	06/24/17 00:15	1,9050A	AS
Solids, Total Suspended	12.	mg/l	10	NA	2	-	06/25/17 20:35	121,2540D	RP
Nitrogen, Ammonia	1.22	mg/l	0.075	0.022	1	06/28/17 15:53	06/28/17 22:36	121,4500NH3-BH	AT
Nitrogen, Nitrate	ND	mg/l	0.100	0.022	1	-	06/24/17 00:37	121,4500NO3-F	MR
Phosphorus, Total	0.066	mg/l	0.010	0.003	1	06/28/17 10:00	06/29/17 09:50	121,4500P-E	SD

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Lab Number: L1721520 **Report Date:** 06/29/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab for sam	ple(s): 0	1-03 Ba	tch: WC	91016557-1				
Nitrogen, Nitrate	ND	mg/l	0.100	0.022	1	-	06/24/17 00:02	121,4500NO3-F	MR
General Chemistry - We	estborough Lab for sam	ple(s): 0	1-03 Ba	tch: WC	91016851-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	06/25/17 20:35	121,2540D	RP
General Chemistry - We	estborough Lab for sam	ple(s): 0	1-03 Ba	tch: WC	91017821-1				
Phosphorus, Total	ND	mg/l	0.010	0.003	1	06/28/17 10:00	06/29/17 09:21	121,4500P-E	SD
General Chemistry - We	estborough Lab for sam	ple(s): 0	1-03 Ba	tch: WC	91017952-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.022	1	06/28/17 15:53	06/28/17 22:17	121,4500NH3-BI	H AT

Lab Control Sample Analysis Batch Quality Control

Project Name: MOUNT KEMBLE LAKE
Project Number: MOUNT KEMBLE LAKE

Lab Number:

L1721520

Report Date:

06/29/17

Parameter	LCS %Recovery Qu	ual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01	1-03	Batch: WG1016	557-2				
Nitrogen, Nitrate	98		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	1-03	Batch: WG1016	561-1				
Specific Conductance	100		-		99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	1-03	Batch: WG1017	321-2				
Phosphorus, Total	101		-		80-120	-		
General Chemistry - Westborough Lab A	Associated sample(s): 01	1-03	Batch: WG1017	952-2				
Nitrogen, Ammonia	103		-		80-120	-		20

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** MOUNT KEMBLE LAKE L1721520 06/29/17 Project Number: Report Date: MOUNT KEMBLE L/

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associate STATION	ed sample(s): 01-03 QC Ba	atch ID: WG1016851-2	QC Sample:	L1721520-03	Client ID: BOTTOM SAMPLE
Solids, Total Suspended	12.	12	mg/l	0	29

Lab Number: L1721520

Report Date: 06/29/17

Project Name: MOUNT KEMBLE LAKE **Project Number:** MOUNT KEMBLE LAKE

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information				Temp			Frozen	
Container ID	Container Type	Cooler	er pH pH deg C Pres Seal		Seal	Date/Time	Analysis(*)		
L1721520-01A	Plastic 120ml unpreserved	Α	7	7	5.3	Υ	Absent		NO3-4500(2),COND-9050(28)
L1721520-01B	Plastic 500ml H2SO4 preserved	Α	<2	<2	5.3	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1721520-01C	Plastic 950ml unpreserved	Α	7	7	5.3	Υ	Absent		TSS-2540(7)
L1721520-02A	Plastic 120ml unpreserved	Α	7	7	5.3	Υ	Absent		NO3-4500(2),COND-9050(28)
L1721520-02B	Plastic 500ml H2SO4 preserved	Α	<2	<2	5.3	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1721520-02C	Plastic 950ml unpreserved	Α	7	7	5.3	Υ	Absent		TSS-2540(7)
L1721520-03A	Plastic 120ml unpreserved	Α	7	7	5.3	Υ	Absent		NO3-4500(2),COND-9050(28)
L1721520-03B	Plastic 500ml H2SO4 preserved	Α	<2	<2	5.3	Υ	Absent		TPHOS-4500(28),NH3-4500(28)
L1721520-03C	Plastic 950ml unpreserved	Α	7	7	5.3	Υ	Absent		TSS-2540(7)

Westborough, MA 01581 8 Walkup Dr.	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	r Wav	Pa	of)	Deliver	ate Red		123	117		ALPHA JOB# L1721520		
TEL: 508-898-9220 FAX: 508-898-9193 Client Information	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 1000 Project Location: 1000 Project #	ent kenble Lake misdown NS Project#) M	e			ables SP-A QuIS (1 Other	File)		ASP-B EQuIS (4 Fi		Billing Information Same as Client Info		
Hackettstown Phone: (908) 850 Fax: Email: emayer@ These samples have be	Losof Rd U NS 07840 D-0303 Sditude lake 12 een previously analyze	(Use Project name as F Project Manager: ALPHAQuote #: Turn-Around Time Standar Rush (only if pre approved		N	Y TOGS WQ Stand Y Restrict Y Unrestrict C Sewer	dards ed Use cted Use	N	Y Part 375 Y CP-51 ther	Ple ap	Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:				
Please specify Metals ALPHA Lab ID			Phosphorus	SMYSONOS-1		chivity		Pro	mple Filtration Done Lab to do eservation Lab to do	T o t a l				
(Lab Use Only) 2 1520 - 01	V 11- C1 1	ion Ne Station	Collection Date Time (2) 17 (2:46 (1) 2 17 (3:10 (1) 2 17 (3:17	Sample Matrix L L L	Sampler's Initials	Y	A K Withoute A K Withoute	-	X X (and			nple Specific Comments	* t t t e S	
	Container Code M	/asthora: Cartification N												
$B = HCI$ A $C = HNO_3$ V $C = H_2SO_4$ G $E = NaOH$ B $E = MeOH$ C $E = NaHSO_4$ O $E = Na_2S_2O_3$ E	= Amber Glass = Vial = Glass = Bacteria Cup = Cube = Other = Encore = BOD Bottle	Relinquished B	y: Date		111111111111111111111111111111111111111	expived By:		- 6	Date/Time		ar no tui sta res TH HA	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.		
17 (17	- CPC 20 (3)								- /	,	☐ (Se	ee reverse side.)		